Contiguity and distributivity in the enumerable Turing degrees — Corrigendum

2002 ◽  
Vol 67 (4) ◽  
pp. 1579-1580
Author(s):  
Rodney G. Downey ◽  
Steffen Lempp

A computably enumerable Turing degree a is called contiguous iff it contains only a single computably enumerable weak truth table degree (Ladner and Sasso [2]). In [1], the authors proved that a nonzero computably enumerable degree a is contiguous iff it is locally distributive, that is, for all a1, a2, c with a1 ∪a2 = a and c ≤ a, there exist ci, ≤ ai with c1 ∪ c2 = c.To do this we supposed that W was a computably enumerable set and ∪ a computably set with a Turing functional Φ such that ΦW = U. Then we constructed computably enumerable sets A0, A1 and B together with functionals Γ0, Γ1, Γ, and Δ so thatand so as to satisfy all the requirements below.That is, we built a degree-theoretical splitting A0, A1 of W and a set B ≤TW such that if we cannot beat all possible degree-theoretical splittings V0, V1 of B then we were able to witness the fact that U ≤WW (via Λ).After the proof it was observed that the set U of the proof (page 1222, paragraph 4) needed only to be Δ20. It was then claimed that a consequence to the proof was that every contiguous computably enumerable degree was, in fact, strongly contiguous, in the sense that all (not necessarily computably enumerable) sets of the degree had the same weak truth table degree.

1997 ◽  
Vol 62 (4) ◽  
pp. 1215-1240 ◽  
Author(s):  
Rodney G. Downey ◽  
Steffen Lempp

AbstractWe prove that a (recursively) enumerable degree is contiguous iff it is locally distributive. This settles a twenty-year old question going back to Ladner and Sasso. We also prove that strong contiguity and contiguity coincide, settling a question of the first author, and prove that no m-topped degree is contiguous, settling a question of the first author and Carl Jockusch [11]. Finally, we prove some results concerning local distributivity and relativized weak truth table reducibility.


2002 ◽  
Vol 02 (02) ◽  
pp. 261-296 ◽  
Author(s):  
PETER A. CHOLAK ◽  
LEO A. HARRINGTON

We show that the double jump is definable in the computably enumerable sets. Our main result is as follows: let [Formula: see text] is the Turing degree of a [Formula: see text] set J ≥T0″}. Let [Formula: see text] such that [Formula: see text] is upward closed in [Formula: see text]. Then there is an ℒ(A) property [Formula: see text] such that [Formula: see text] if and only if there is an A where A ≡T F and [Formula: see text]. A corollary of this is that, for all n ≥ 2, the high n ([Formula: see text]) computably enumerable degrees are invariant in the computably enumerable sets. Our work resolves Martin's Invariance Conjecture.


2008 ◽  
Vol 73 (4) ◽  
pp. 1373-1388
Author(s):  
Rachel Epstein

AbstractWe examine the computably enumerable (c.e.) degrees of prime models of complete atomic decidable (CAD) theories. A structure has degree d if d is the degree of its elementary diagram. We show that if a CAD theory T has a prime model of c.e. degree c, then T has a prime model of strictly lower c.e. degree b, where, in addition, b is low (b′ = 0′), This extends Csima's result that every CAD theory has a low prime model. We also prove a density result for c.e. degrees of prime models. In particular, if c and d are c.e. degrees with d < c and c not low2 (c″ > 0″), then for any CAD theory T, there exists a c.e. degree b with d < b < c such that T has a prime model of degree b, where b can be chosen so that b′ is any degree c.e. in c with d′ ≤ b′. As a corollary, we show that for any degree c with 0 < c < 0′, every CAD theory has a prime model of low c.e. degree incomparable with c. We show also that every CAD theory has prime models of low c.e. degree that form a minimal pair, extending another result of Csima. We then discuss how these results apply to homogeneous models.


2013 ◽  
Vol 13 (02) ◽  
pp. 1350005 ◽  
Author(s):  
RODNEY G. DOWNEY ◽  
CARL G. JOCKUSCH ◽  
PAUL E. SCHUPP

We study connections between classical asymptotic density, computability and computable enumerability. In an earlier paper, the second two authors proved that there is a computably enumerable set A of density 1 with no computable subset of density 1. In the current paper, we extend this result in three different ways: (i) The degrees of such sets A are precisely the nonlow c.e. degrees. (ii) There is a c.e. set A of density 1 with no computable subset of nonzero density. (iii) There is a c.e. set A of density 1 such that every subset of A of density 1 is of high degree. We also study the extent to which c.e. sets A can be approximated by their computable subsets B in the sense that A\B has small density. There is a very close connection between the computational complexity of a set and the arithmetical complexity of its density and we characterize the lower densities, upper densities and densities of both computable and computably enumerable sets. We also study the notion of "computable at density r" where r is a real in the unit interval. Finally, we study connections between density and classical smallness notions such as immunity, hyperimmunity, and cohesiveness.


2016 ◽  
Vol 9 (4) ◽  
pp. 810-835 ◽  
Author(s):  
JACOPO AMIDEI ◽  
DUCCIO PIANIGIANI ◽  
LUCA SAN MAURO ◽  
ANDREA SORBI

AbstractThis paper is a continuation of Amidei, Pianigiani, San Mauro, Simi, & Sorbi (2016), where we have introduced the quasidialectical systems, which are abstract deductive systems designed to provide, in line with Lakatos’ views, a formalization of trial and error mathematics more adherent to the real mathematical practice of revision than Magari’s original dialectical systems. In this paper we prove that the two models of deductive systems (dialectical systems and quasidialectical systems) have in some sense the same information content, in that they represent two classes of sets (the dialectical sets and the quasidialectical sets, respectively), which have the same Turing degrees (namely, the computably enumerable Turing degrees), and the same enumeration degrees (namely, the ${\rm{\Pi }}_1^0$ enumeration degrees). Nonetheless, dialectical sets and quasidialectical sets do not coincide. Even restricting our attention to the so-called loopless quasidialectical sets, we show that the quasidialectical sets properly extend the dialectical sets. As both classes consist of ${\rm{\Delta }}_2^0$ sets, the extent to which the two classes differ is conveniently measured using the Ershov hierarchy: indeed, the dialectical sets are ω-computably enumerable (close inspection also shows that there are dialectical sets which do not lie in any finite level; and in every finite level n ≥ 2 of the Ershov hierarchy there is a dialectical set which does not lie in the previous level); on the other hand, the quasidialectical sets spread out throughout all classes of the hierarchy (close inspection shows that for every ordinal notation a of a nonzero computable ordinal, there is a quasidialectical set lying in ${\rm{\Sigma }}_a^{ - 1}$, but in none of the preceding levels).


1999 ◽  
Vol 64 (3) ◽  
pp. 1037-1064 ◽  
Author(s):  
Michael A. Jahn

AbstractWe prove that any speedable computably enumerable set may be split into a disjoint pair of speedable computably enumerable sets. This solves a longstanding question of J.B. Remmel concerning the behavior of computably enumerable sets in Blum's machine independent complexity theory. We specify dynamic requirements and implement a novel way of detecting speedability—by embedding the relevant measurements into the substage structure of the tree construction. Technical difficulties in satisfying the dynamic requirements lead us to implement “local” strategies that only look down the tree. The (obvious) problems with locality are then resolved by placing an isomorphic copy of the entire priority tree below each strategy (yielding a self-similar tree). This part of the construction could be replaced by an application of the Recursion Theorem, but shows how to achieve the same effect with a more direct construction.


1996 ◽  
Vol 2 (2) ◽  
pp. 199-213 ◽  
Author(s):  
Leo Harrington ◽  
Robert I. Soare

AbstractWe announce and explain recent results on the computably enumerable (c.e.) sets, especially their definability properties (as sets in the spirit of Cantor), their automorphisms (in the spirit of Felix Klein's Erlanger Programm), their dynamic properties, expressed in terms of how quickly elements enter them relative to elements entering other sets, and the Martin Invariance Conjecture on their Turing degrees, i.e., their information content with respect to relative computability (Turing reducibility).


Sign in / Sign up

Export Citation Format

Share Document