properly discontinuous action
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2017 ◽  
Vol 28 (06) ◽  
pp. 1750046 ◽  
Author(s):  
Ali Baklouti ◽  
Souhail Bejar

Let [Formula: see text] be a Lie group, [Formula: see text] a closed subgroup of [Formula: see text] and [Formula: see text] a discontinuous group for the homogeneous space [Formula: see text]. Given a deformation parameter [Formula: see text], the deformed subgroup [Formula: see text] may fail to act properly discontinuously on [Formula: see text]. To understand this phenomenon in the case when [Formula: see text] stands for an Euclidean motion group [Formula: see text], we compare the notion of stability for discontinuous groups (cf. [T. Kobayashi and S. Nasrin, Deformation of properly discontinuous action of [Formula: see text] on [Formula: see text], Int. J. Math. 17 (2006) 1175–1193]) with its variants. We prove that the defined stability variants hold when [Formula: see text] turns out to be a crystallographic subgroup of [Formula: see text].



2006 ◽  
Vol 74 (2) ◽  
pp. 247-262
Author(s):  
S. B. Mulay

To a cardinal k ≥ 2, we associate a simply-connected polyhedral surface Σk endowed with a bounded metric dk such that every group of cardinality k has an isometric, properly discontinuous action on (Σk, dk). If ℵ0 ≤ k ≤ 2ℵ0 and G is a group of cardinality k, then we extend (Σk, dk) to a simply-connected bounded metric space (MG, dG) such that the action of G extends to an isometric, properly discontinuous action on (MG, dG) and G is the full isometry-group of (MG, dG).



Sign in / Sign up

Export Citation Format

Share Document