isometry group
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 27)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Pak Tung Ho ◽  
Jinwoo Shin

AbstractAs a generalization of the Yamabe problem, Hebey and Vaugon considered the equivariant Yamabe problem: for a subgroup G of the isometry group, find a G-invariant metric whose scalar curvature is constant in a given conformal class. In this paper, we study the equivariant Yamabe problem with boundary.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Aybike Çatal-Özer ◽  
Emine Diriöz

Abstract In a supersymmetric compactification of Type II supergravity, preservation of $$ \mathcal{N} $$ N = 1 supersymmetry in four dimensions requires that the structure group of the generalized tangent bundle TM ⨁ T∗M of the six dimensional internal manifold M is reduced from SO(6) to SU(3) × SU(3). This topological condition on the internal manifold implies existence of two globally defined compatible pure spinors Φ1 and Φ2 of non-vanishing norm. Furthermore, these pure spinors should satisfy certain first order differential equations. In this paper, we show that non-Abelian T-duality (NATD) is a solution generating transformation for these pure spinor equations. We first show that the pure spinor equations are covariant under Pin(d, d) transformations. Then, we use the fact NATD is generated by a coordinate dependent Pin(d, d) transformation. The key point is that the flux produced by this transformation is the same as the geometric flux associated with the isometry group, with respect to which one implements NATD. We demonstrate our method by studying NATD of certain solutions of Type IIB supergravity with SU(2) isometry and SU(3) structure.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Anayeli Ramirez

Abstract We obtain an AdS2 solution to Type IIA supergravity with 4 Poincaré supersymmetries, via non-Abelian T-duality with respect to a freely acting SL(2,R) isometry group, operating on the AdS3×S3×CY2 solution to Type IIB. That is, non-Abelian T-duality on AdS3. The dual background obtained fits in the class of AdS2×S3×CY2 solutions to massive Type IIA constructed in [1]. We propose and study a quiver quantum mechanics dual to this solution that we interpret as describing the backreaction of the baryon vertex of a D4-D8 brane intersection.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Daniel Hutchings ◽  
Sergei M. Kuzenko ◽  
Michael Ponds

Abstract We derive the transverse projection operators for fields with arbitrary integer and half-integer spin on three-dimensional anti-de Sitter space, AdS3. The projectors are constructed in terms of the quadratic Casimir operators of the isometry group SO(2, 2) of AdS3. Their poles are demonstrated to correspond to (partially) massless fields. As an application, we make use of the projectors to recast the conformal and topologically massive higher-spin actions in AdS3 into a manifestly gauge-invariant and factorised form. We also propose operators which isolate the component of a field that is transverse and carries a definite helicity. Such fields correspond to irreducible representations of SO(2, 2). Our results are then extended to the case of $$ \mathcal{N} $$ N = 1 AdS3 supersymmetry.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1635
Author(s):  
Antonio Jiménez-Vargas ◽  
María Isabel Ramírez

Let Lip([0,1]) be the Banach space of all Lipschitz complex-valued functions f on [0,1], equipped with one of the norms: fσ=|f(0)|+f′L∞ or fm=max|f(0)|,f′L∞, where ·L∞ denotes the essential supremum norm. It is known that the surjective linear isometries of such spaces are integral operators, rather than the more familiar weighted composition operators. In this paper, we describe the topological reflexive closure of the isometry group of Lip([0,1]). Namely, we prove that every approximate local isometry of Lip([0,1]) can be represented as a sum of an elementary weighted composition operator and an integral operator. This description allows us to establish the algebraic reflexivity of the sets of surjective linear isometries, isometric reflections, and generalized bi-circular projections of Lip([0,1]). Additionally, some complete characterizations of such reflections and projections are stated.


Author(s):  
MACIEJ DUNAJSKI ◽  
PAUL TOD

Abstract We study the integrability of the conformal geodesic flow (also known as the conformal circle flow) on the SO(3)–invariant gravitational instantons. On a hyper–Kähler four–manifold the conformal geodesic equations reduce to geodesic equations of a charged particle moving in a constant self–dual magnetic field. In the case of the anti–self–dual Taub NUT instanton we integrate these equations completely by separating the Hamilton–Jacobi equations, and finding a commuting set of first integrals. This gives the first example of an integrable conformal geodesic flow on a four–manifold which is not a symmetric space. In the case of the Eguchi–Hanson we find all conformal geodesics which lie on the three–dimensional orbits of the isometry group. In the non–hyper–Kähler case of the Fubini–Study metric on $\mathbb{CP}^2$ we use the first integrals arising from the conformal Killing–Yano tensors to recover the known complete integrability of conformal geodesics.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Biel Cardona ◽  
Pau Figueras

Abstract In this paper we study lumpy black holes with AdSp × Sq asymptotics, where the isometry group coming from the sphere factor is broken down to SO(q). Depending on the values of p and q, these are solutions to a certain Supergravity theory with a particular gauge field. We have considered the values (p, q) = (5, 5) and (p, q) = (4, 7), corresponding to type IIB supergravity in ten dimensions and eleven-dimensional supergravity respectively. These theories presumably contain an infinite spectrum of families of lumpy black holes, labeled by a harmonic number ℓ, whose endpoints in solution space merge with another type of black holes with different horizon topology. We have numerically constructed the first four families of lumpy solutions, corresponding to ℓ = 1, 2+, 2− and 3. We show that the geometry of the horizon near the merger is well-described by a cone over a triple product of spheres, thus extending Kol’s local model to the present asymptotics. Interestingly, the presence of non-trivial fluxes in the internal sphere implies that the cone is no longer Ricci flat. This conical manifold accounts for the geometry and the behavior of the physical quantities of the solutions sufficiently close to the critical point. Additionally, we show that the vacuum expectation values of the dual scalar operators approach their critical values with a power law whose exponents are dictated by the local cone geometry in the bulk.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Sujay K. Ashok ◽  
Jan Troost

Abstract We revisit the calculation of the thermal free energy for string theory in three-dimensional anti-de Sitter spacetime with Neveu-Schwarz-Neveu-Schwarz flux. The path integral calculation is exploited to confirm the off-shell Hilbert space and we find that the Casimir of the discrete representations of the isometry group takes values in a half-open interval. We extend the free energy calculation to the case of superstrings, calculate the boundary toroidal twisted partition function in the Ramond-Ramond sector, and prove lower bounds on the boundary conformal dimension from the bulk perspective. We classify Ramond-Ramond ground states and construct their second quantized partition function. The partition function exhibits intriguing modular properties.


2021 ◽  
Vol 38 (6) ◽  
pp. 067001
Author(s):  
Joan Josep Ferrando ◽  
Juan Antonio Sáez

Sign in / Sign up

Export Citation Format

Share Document