upper semimodular lattice
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

Order ◽  
2020 ◽  
Author(s):  
Gábor Czédli ◽  
Robert C. Powers ◽  
Jeremy M. White

AbstractLet L be a lattice of finite length and let d denote the minimum path length metric on the covering graph of L. For any $\xi =(x_{1},\dots ,x_{k})\in L^{k}$ ξ = ( x 1 , … , x k ) ∈ L k , an element y belonging to L is called a median of ξ if the sum d(y,x1) + ⋯ + d(y,xk) is minimal. The lattice L satisfies the c1-median property if, for any $\xi =(x_{1},\dots ,x_{k})\in L^{k}$ ξ = ( x 1 , … , x k ) ∈ L k and for any median y of ξ, $y\leq x_{1}\vee \dots \vee x_{k}$ y ≤ x 1 ∨ ⋯ ∨ x k . Our main theorem asserts that if L is an upper semimodular lattice of finite length and the breadth of L is less than or equal to 2, then L satisfies the c1-median property. Also, we give a construction that yields semimodular lattices, and we use a particular case of this construction to prove that our theorem is sharp in the sense that 2 cannot be replaced by 3.


Author(s):  
D. C. Trueman

SynopsisLet W be a semigroup with W\W2 non-empty, such that if ρ is a congruence on W with xpy for all x, y= W\W2, then zpw for all z, w= W2. We prove that the lattice of congruences on W is directly indecomposable, and conclude that a direct product of cyclic semigroups, with at least two non-group direct factors, has a directly indecomposable lattice of congruences. We find that the lattice of congruences on a direct product S1×S2×V of two non-trivial cyclic semigroups S1 and S2, one not being a group, and any other semigroup V, is not lower semimodular, and hence, not modular. We then prove that any finite ideal extension of a group by a nil semigroup has an upper semimodular lattice of congruences, and conclude that a finite direct product of finite cyclic semigroups has an upper semimodular lattice of congruences.


Sign in / Sign up

Export Citation Format

Share Document