radical square zero algebra
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 28 (01) ◽  
pp. 91-104
Author(s):  
Xiaojin Zhang

For a radical square zero algebra [Formula: see text] and an indecomposable right [Formula: see text]-module [Formula: see text], when [Formula: see text] is Gorenstein of finite representation type or [Formula: see text] is [Formula: see text]-rigid, [Formula: see text] is [Formula: see text]-rigid if and only if the first two projective terms of a minimal projective resolution of [Formula: see text] have no non-zero direct summands in common. In particular, we determine all [Formula: see text]-tilting modules for Nakayama algebras with radical square zero.



2018 ◽  
Vol 61 (4) ◽  
pp. 1155-1177 ◽  
Author(s):  
Huanhuan Li

AbstractFor a finite quiverQwithout sources, we consider the corresponding radical square zero algebraA. We construct an explicit compact generator for the homotopy category of acyclic complexes of projectiveA-modules. We call such a generator the projective Leavitt complex ofQ. This terminology is justified by the following result: the opposite differential graded endomorphism algebra of the projective Leavitt complex ofQis quasi-isomorphic to the Leavitt path algebra ofQop. Here,Qopis the opposite quiver ofQ, and the Leavitt path algebra ofQopis naturally${\open Z}$-graded and viewed as a differential graded algebra with trivial differential.



Sign in / Sign up

Export Citation Format

Share Document