homotopy category
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 25)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Wendy Lowen ◽  
Michel Van den Bergh

Abstract Consider a monoidal category that is at the same time abelian with enough projectives and such that projectives are flat on the right. We show that there is a $B_{\infty }$-algebra that is $A_{\infty }$-quasi-isomorphic to the derived endomorphism algebra of the tensor unit. This $B_{\infty }$-algebra is obtained as the co-Hochschild complex of a projective resolution of the tensor unit, endowed with a lifted $A_{\infty }$-coalgebra structure. We show that in the classical situation of the category of bimodules over an algebra, this newly defined $B_{\infty }$-algebra is isomorphic to the Hochschild complex of the algebra in the homotopy category of $B_{\infty }$-algebras.


Astérisque ◽  
2021 ◽  
Vol 425 ◽  
Author(s):  
Tom BACHMANN ◽  
Marc HOYOIS

If $f : S' \to S$ is a finite locally free morphism of schemes, we construct a symmetric monoidal "norm" functor $f_\otimes : \mathcal{H}_{\bullet}(S')\to \mathcal{H}_{\bullet}(S)$, where $\mathcal{H}_\bullet(S)$ is the pointed unstable motivic homotopy category over $S$. If $f$ is finite étale, we show that it stabilizes to a functor $f_\otimes : \mathcal{S}\mathcal{H}(S') \to \mathcal{S}\mathcal{H}(S)$, where $\mathcal{S}\mathcal{H}(S)$ is the $\mathbb{P}^1$-stable motivic homotopy category over $S$. Using these norm functors, we define the notion of a  normed motivic spectrum, which is an enhancement of a motivic $E_\infty$-ring spectrum. The main content of this text is a detailed study of the norm functors and of normed motivic spectra, and the construction of examples. In particular: we investigate the interaction of norms with Grothendieck's Galois theory, with Betti realization, and with Voevodsky's slice filtration; we prove that the norm functors categorify Rost's multiplicative transfers on Grothendieck-Witt rings; and we construct normed spectrum structures on the motivic cohomology spectrum $H\mathbb{Z}$, the homotopy $K$-theory spectrum $KGL$, and the algebraic cobordism spectrum $MGL$. The normed spectrum structure on $H\mathbb{Z}$ is a common refinement of Fulton and MacPherson's mutliplicative transfers on Chow groups and of Voevodsky's power operations in motivic cohomology.


2021 ◽  
Vol 8 ◽  
pp. 533-583
Author(s):  
Frédéric Déglise ◽  
Jean Fasel ◽  
Fangzhou Jin ◽  
Adeel A. Khan

Author(s):  
XIAO–WU CHEN

Abstract For a finite dimensional algebra A, the bounded homotopy category of projective A-modules and the bounded derived category of A-modules are dual to each other via certain categories of locally-finite cohomological functors. We prove that the duality gives rise to a 2-categorical duality between certain strict 2-categories involving bounded homotopy categories and bounded derived categories, respectively. We apply the 2-categorical duality to the study of triangle autoequivalence groups.


2021 ◽  
Vol 19 (1) ◽  
pp. 706-723
Author(s):  
Yuri V. Muranov ◽  
Anna Szczepkowska

Abstract In this paper, we introduce the category and the homotopy category of edge-colored digraphs and construct the functorial homology theory on the foundation of the path homology theory provided by Grigoryan, Muranov, and Shing-Tung Yau. We give the construction of the path homology theory for edge-colored graphs that follows immediately from the consideration of natural functor from the category of graphs to the subcategory of symmetrical digraphs. We describe the natural filtration of path homology groups of any digraph equipped with edge coloring, provide the definition of the corresponding spectral sequence, and obtain commutative diagrams and braids of exact sequences.


2020 ◽  
Vol 13 (2) ◽  
pp. 323-345
Author(s):  
Gustina Elfiyanti ◽  
Intan Muchtadi-Alamsyah ◽  
Fajar Yuliawan ◽  
Dellavitha Nasution

Motivated by a study of Davvaz and Shabbani which introduced the concept of U-complexes and proposed a generalization on some results in homological algebra, we study thecategory of U-complexes and the homotopy category of U-complexes. In [8] we said that the category of U-complexes is an abelian category. Here, we show that the object that we claimed to be the kernel of a morphism of U-omplexes does not satisfy the universal property of the kernel, hence wecan not conclude that the category of U-complexes is an abelian category. The homotopy category of U-complexes is an additive category. In this paper, we propose a weakly chain U-complex by changing the second condition of the chain U-complex. We prove that the homotopy category ofweakly U-complexes is a triangulated category.


Sign in / Sign up

Export Citation Format

Share Document