monotone coupling
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2018 ◽  
Vol 55 (3) ◽  
pp. 742-759
Author(s):  
Fraser Daly ◽  
Oliver Johnson

Abstract It is well known that assumptions of monotonicity in size-bias couplings may be used to prove simple, yet powerful, Poisson approximation results. Here we show how these assumptions may be relaxed, establishing explicit Poisson approximation bounds (depending on the first two moments only) for random variables which satisfy an approximate version of these monotonicity conditions. These are shown to be effective for models where an underlying random variable of interest is contaminated with noise. We also state explicit Poisson approximation bounds for sums of associated or negatively associated random variables. Applications are given to epidemic models, extremes, and random sampling. Finally, we also show how similar techniques may be used to relax the assumptions needed in a Poincaré inequality and in a normal approximation result.


2014 ◽  
Vol 36 (2) ◽  
pp. 574-607 ◽  
Author(s):  
RUSSELL LYONS ◽  
ANDREAS THOM

To any positive contraction $Q$ on $\ell ^{2}(W)$, there is associated a determinantal probability measure $\mathbf{P}^{Q}$ on $2^{W}$, where $W$ is a denumerable set. Let ${\rm\Gamma}$ be a countable sofic finitely generated group and $G=({\rm\Gamma},\mathsf{E})$ be a Cayley graph of ${\rm\Gamma}$. We show that if $Q_{1}$ and $Q_{2}$ are two ${\rm\Gamma}$-equivariant positive contractions on $\ell ^{2}({\rm\Gamma})$ or on $\ell ^{2}(\mathsf{E})$ with $Q_{1}\leq Q_{2}$, then there exists a ${\rm\Gamma}$-invariant monotone coupling of the corresponding determinantal probability measures witnessing the stochastic domination $\mathbf{P}^{Q_{1}}\preccurlyeq \mathbf{P}^{Q_{2}}$. In particular, this applies to the wired and free uniform spanning forests, which was known before only when ${\rm\Gamma}$ is residually amenable. In the case of spanning forests, we also give a second more explicit proof, which has the advantage of showing an explicit way to create the free uniform spanning forest as a limit over a sofic approximation. Another consequence of our main result is to prove that all determinantal probability measures $\mathbf{P}^{Q}$ as above are $\bar{d}$-limits of finitely dependent processes. Thus, when ${\rm\Gamma}$ is amenable, $\mathbf{P}^{Q}$ is isomorphic to a Bernoulli shift, which was known before only when ${\rm\Gamma}$ is abelian. We also prove analogous results for sofic unimodular random rooted graphs.


2013 ◽  
Vol 41 (3A) ◽  
pp. 1180-1190 ◽  
Author(s):  
Péter Mester
Keyword(s):  

1996 ◽  
Vol 33 (1) ◽  
pp. 156-163 ◽  
Author(s):  
Taizhong Hu

A monotone coupling of order statistics from two sets of independent non-negative random variables Xi, i = 1, ···, n, and Yi, i = 1, ···, n, means that there exist random variables X′i, Y′i, i = 1, ···, n, on a common probability space such that , and a.s. j = 1, ···, n, where X(1) ≦ X(2) ≦ ·· ·≦ X(n) are the order statistics of Xi, i = 1, ···, n (with the corresponding notations for the X′, Y, Y′ sample). In this paper, we study the monotone coupling of order statistics of lifetimes in two multi-unit systems under multivariate imperfect repair. Similar results for a special model due to Ross are also given.


1996 ◽  
Vol 33 (01) ◽  
pp. 156-163 ◽  
Author(s):  
Taizhong Hu

A monotone coupling of order statistics from two sets of independent non-negative random variables Xi, i = 1, ···, n, and Yi, i = 1, ···, n, means that there exist random variables X′i, Y′i, i = 1, ···, n, on a common probability space such that , and a.s. j = 1, ···, n, where X(1) ≦ X(2) ≦ ·· ·≦ X(n) are the order statistics of Xi , i = 1, ···, n (with the corresponding notations for the X′, Y, Y′ sample). In this paper, we study the monotone coupling of order statistics of lifetimes in two multi-unit systems under multivariate imperfect repair. Similar results for a special model due to Ross are also given.


1991 ◽  
Vol 28 (2) ◽  
pp. 278-286 ◽  
Author(s):  
A. D. Barbour ◽  
T. Lindvall ◽  
L. C. G. Rogers

If Xi, i = 1, ···, n are independent exponential random variables with parameters λ1, · ··, λ n, and if Yi, i = 1, ···, n are independent exponential random variables with common parameter equal to (λ1 + · ·· + λ n)/n, then there is a monotone coupling of the order statistics X(1), · ··, X(n) and Y(1), · ··, Y(n); that is, it is possible to construct on a common probability space random variables X′i, Y′i, i = 1, ···, n, such that for each i, Y′(i)≦X′(i) a.s., where the law of the X′i (respectively, the Y′i) is the same as the law of the Xi (respectively, the Yi.) This result is due to Proschan and Sethuraman, and independently to Ball. We shall here prove an extension to a more general class of distributions for which the failure rate function r(x) is decreasing, and xr(x) is increasing. This very strong order relation allows comparison of properties of epidemic processes where rates of infection are not uniform with the corresponding properties for the homogeneous case. We further prove that for a sequence Zi, i = 1, ···, n of independent random variables whose failure rates at any time add to 1, the order statistics are stochastically larger than the order statistics of a sample of n independent exponential random variables of mean n, but that the strong monotone coupling referred to above is impossible in general.


1991 ◽  
Vol 28 (02) ◽  
pp. 278-286 ◽  
Author(s):  
A. D. Barbour ◽  
T. Lindvall ◽  
L. C. G. Rogers

If Xi , i = 1, ···, n are independent exponential random variables with parameters λ 1, · ··, λ n , and if Yi, i = 1, ···, n are independent exponential random variables with common parameter equal to (λ1 + · ·· + λ n )/n, then there is a monotone coupling of the order statistics X (1), · ··, X (n) and Y (1), · ··, Y (n); that is, it is possible to construct on a common probability space random variables X′ i , Y′ i , i = 1, ···, n, such that for each i, Y ′ (i)≦X ′ (i) a.s., where the law of the X ′ i (respectively, the Y ′ i ) is the same as the law of the Xi (respectively, the Yi.) This result is due to Proschan and Sethuraman, and independently to Ball. We shall here prove an extension to a more general class of distributions for which the failure rate function r(x) is decreasing, and xr(x) is increasing. This very strong order relation allows comparison of properties of epidemic processes where rates of infection are not uniform with the corresponding properties for the homogeneous case. We further prove that for a sequence Zi, i = 1, ···, n of independent random variables whose failure rates at any time add to 1, the order statistics are stochastically larger than the order statistics of a sample of n independent exponential random variables of mean n, but that the strong monotone coupling referred to above is impossible in general.


Sign in / Sign up

Export Citation Format

Share Document