amalgamated subgroup
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

2019 ◽  
Vol 100 (3) ◽  
pp. 775-803
Author(s):  
Adam Clay ◽  
Tyrone Ghaswala






2015 ◽  
Vol 20 (1) ◽  
pp. 133-137 ◽  
Author(s):  
E. A. Tumanova

Let K be a root class of groups. It is proved that a free product of any family of residually K groups with one amalgamated subgroup, which is a retract in all free factors, is residually K. The sufficient condition for a generalized free product of two groups to be residually K is also obtained, provided that the amalgamated subgroup is normal in one of the free factors and is a retract in another.



2015 ◽  
Vol 20 (1) ◽  
pp. 124-132
Author(s):  
A. V. Rozov

Let G be a free product of residually finite virtually soluble groups A and B of finite rank with an amalgamated subgroup H, H 6= A and H 6= B. And let H contains a subgroup W of finite index which is normal in both A and B. We prove that the group G is residually finite if and only if the subgroup H is finitely separable in A and B. Also we prove that if all subgroups of A and B are finitely separable in A and B, respectively, all finitely generated subgroups of G are finitely separable in G.





2011 ◽  
Vol 61 (3) ◽  
Author(s):  
V. Bludov ◽  
A. Glass

AbstractLet H i be a sublattice subgroup of a lattice-ordered group G i (i = 1, 2). Suppose that H 1 and H 2 are isomorphic as lattice-ordered groups, say by φ. In general, there is no lattice-ordered group in which G 1 and G 2 can be embedded (as lattice-ordered groups) so that the embeddings agree on the images of H 1 and H 1φ. In this article we prove that the group free product of G 1 and G 2 amalgamating H 1 and H 1φ is right orderable and so embeddable (as a group) in a lattice-orderable group. To obtain this, we use our necessary and sufficient conditions for the free product of right-ordered groups with amalgamated subgroup to be right orderable [BLUDOV, V. V.—GLASS, A. M. W.: Word problems, embeddings, and free products of right-ordered groups with amalgamated subgroup, Proc. London Math. Soc. (3) 99 (2009), 585–608]. We also provide new limiting examples to show that amalgamation can fail in the category of lattice-ordered groups even when the amalgamating sublattice subgroups are convex and normal (ℓ-ideals) and solve of Problem 1.42 from [KOPYTOV, V. M.—MEDVEDEV, N. YA.: Ordered groups. In: Selected Problems in Algebra. Collection of Works Dedicated to the Memory of N. Ya. Medvedev, Altaii State University, Barnaul, 2007, pp. 15–112 (Russian)].







Sign in / Sign up

Export Citation Format

Share Document