There is a special local ring [Formula: see text] of order [Formula: see text] without identity for the multiplication, defined by [Formula: see text] We study the algebraic structure of linear codes over that non-commutative local ring, in particular their residue and torsion codes. We introduce the notion of quasi self-dual codes over [Formula: see text] and Type IV codes, that is quasi self-dual codes whose all codewords have even Hamming weight. We study the weight enumerators of these codes by means of invariant theory, and classify them in short lengths.