infinite dilute activity coefficient
Recently Published Documents


TOTAL DOCUMENTS

1
(FIVE YEARS 1)

H-INDEX

0
(FIVE YEARS 0)

2021 ◽  
Vol 2125 (1) ◽  
pp. 012048
Author(s):  
Guohua Ding ◽  
Limeng Liang

Abstract The thermodynamic properties of fission products in molten salt and liquid metal have a great influence on the disposal of nuclear waste in the nuclear fuel cycle industrial system. This paper attempts to extract useful thermodynamic information from the only few experimental activities of lanthanides (Ce, Pr, La) in liquid Bi at different temperatures. The molecular interaction volume model (MIVM) was adopted to model and predict some temperature-dependent thermodynamic functions, including activity, infinite dilute activity coefficient, and molar excess Gibbs energy. The minor average of Δ G ¯ error indicated that assuming εji − εii is a constant is reasonable. On this basis, the natural logarithm of the interaction coefficients and the natural logarithm of the infinite dilute activity coefficient of lanthanides (Ce, Pr, La) in the Bi-based metal melt, these two parameters, show the linear relationship with the reciprocal of temperature. The reasonable agreement of the modeled thermodynamic parameters with the existing experimental data verified that the MIVM is quite convenient and reliable, which can provide guidance for separating fission products from molten salt reactors.


Sign in / Sign up

Export Citation Format

Share Document