great influence
Recently Published Documents





2022 ◽  
Vol 43 (2) ◽  
pp. 611-628
João Marcos Monteiro Batista ◽  
Leonardo Augusto Fonseca Pascoal ◽  
José Humberto Vilar da Silva ◽  
Veruska Dilyanne Silva Gomes ◽  

Fish larviculture exert great influence in the subsequent phases, in which nutrition is a basic prerequisite for success. Therefore, when it is in an intensified production system, it promotes the limitation of some minerals, making it necessary to supplement selenium in diets for post-larvae. The objective of this study was to evaluate selenium levels and sources in post-larvae Nile tilapia diets on muscle performance and histology. A total of 1,260 post-larvae with an initial average weight of 0.010 g were used, distributed in a completely randomized design in a factorial scheme with four supplementation levels (0.6; 0.9; 1.2 and 1.5 mg of Se/Kg) and two sources (sodium selenite and selenium yeast), plus the negative control, with 35 post-larvae Nile tilapia used per experimental unit. The physical-chemical parameters of water quality were within those recommended for tilapia cultivation. Feed consumption (p < 0.05) and hepatosomatic index (p < 0.05) were affected by the source used. Effects of supplemented selenium levels and sources were not observed for the other performance variables. Higher values for final height, final width, specific development rate and protein efficiency rate were found (p < 0.05) when comparing the control diet with diets containing the sodium selenite source. No effects on muscle fiber morphometry were observed (p > 0.05) in the studied variables. It is concluded that 0.6 mg of selenium in the diet, regardless of the source used, met the mineral requirement for post-larvae Nile tilapia.

2022 ◽  
Vol 8 (1) ◽  
pp. 9-34
Antanas Stančius ◽  
Petras Grecevičius

Based on the information from fundamental historical sources, the oldest origins of civilization can be found in the river valleys of the Tigris and the Euphrates. Throughout Mesopotamia important routes of trade and migration of peoples followed, which influenced the emergence and development of one of the world’s first urban-type civilizations. It was here that the Sumerian civilization evolved, leading to a major cultural and technological breakthrough. Their widely used irrigation canals influenced not only the landscape, but also the entire ecological, economic and political systems of the time, water being a particularly important factor in this civilization. The oldest known gardens have also expanded here, and the Hanging Gardens of Babylon still fuel people's imagination. Due to its unique geographical location, the region has had a profound impact on the surrounding nations, and it is no accident that the Assyrian Imperial Parks of Northern Mesopotamia exerted a great influence on the civilizations that followed. Undoubtedly, ancient Mesopotamia occupies a fundamental place in the development of garden art. With the growing use of roof gardens and the use of plants in modern architectural constructions as an extremely important tool for composition, it is worth exploring more closely the origins of this landscape-relevant process.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 653
Jinguang Zhang ◽  
Jun Rao ◽  
Lei Ma ◽  
Xianglong Wen

In this paper, based on the composite laminated plate theory and a strain energy model, the damping capacity of a Carbon Fiber Reinforced Plastics (CFRP) raft frame was studied. According to the finite element analysis (FEA) and damping ratio prediction model, the influences of different layups on the damping capacity of the raft frame and its components (top/bottom plate and I-support) were discussed. Comparing the FEA results with the test results, it can be figured out that the CFRP laminate layup has a great influence on the damping ratio of the raft frame, and the maximum error of the first-order natural frequency and damping ratio of the top/bottom plate were 5.6% and 15.1%, respectively. The maximum error of the first-order natural frequency of the I-support between the FEA result and the test result was 7.5%, suggesting that because of the stress concentration, the error of the damping ratio was relatively large. As for the raft frame, the damping performance was affected by the I-support arrangement and the simulation analysis was in good agreement with the experimental results. This study can provide a useful reference for improving the damping performance of CFRP raft frames.

2022 ◽  
Vol 14 (2) ◽  
pp. 79
Ismael Gaião da Costa ◽  
José Wilson da SiIva ◽  
Gheysa Coelho Silva ◽  
Mario de Andrade Lira Junior ◽  
Cybelle Souza de Oliveira ◽  

The objective of this research was to evaluate the correlations between variables related to the biological nitrogen fixation (BNF) in segregating generations of cowpea and to unfold these correlations in direct and indirect effects, through path analysis. An outdoor bench experiment was conducted at Carpina Experimental Sugarcane Station of, located at the Zona da Mata region of the State of the Pernambuco, Northeast of Brazil (Federal Rural University of Pernambuco), between March and April 2016. The seeds were planted in 20 cm &times; 30 cm polyethylene bags, using a substrate composed of a mixture of vermiculite and sand washed in a ratio of 1:1. Bradyrhizobium references, recommended for culture, were used as a mixture of two strains. Parental and F2, F3 and F4 generations were evaluated in a randomized block design with four replicates. Data collection was performed 45 days after the emergency (DAE). Phenotypic correlations and path analysis of the number of nodules per plant (NN), nodules dry mass (NDM), dry roots mass (DRM), dry mass of aerial part (DMAP), nodulation efficiency (NODE) and nitrogen accumulated in the aerial part (NAAP). The phenotypic correlations between the variables related to the BNF showed high magnitudes, demonstrating that there is a great influence of each of the variables on the others, furthermore the path analysis of the coefficients indicated that all the primary components (NN, NDM, DRM, DMAP and NODE) must be considered when it is desired to increase the NAAP in segregating generations of cowpea.

Giuseppe Sortino ◽  
Alessio Allegra ◽  
Vittorio Farina ◽  
Maria Lucia Valeria De Chiara ◽  
Paolo Inglese

Abstract Background Loquat cultivars cultivated in Southern Italy are very appreciated by consumers for their sensorial characteristics, such as persistent aroma and taste. Apposite maturity indexes for peeling and processing loquat fruit were investigated to increase diffusion of minimally processed loquat. The genotype’s effect on the minimally processed loquat fruit shelf life and quality harvested at commercial maturity (80% yellow color) was investigated on peeled fruit stored at 5 °C for 10 days. The role of sugars, organic acids and phenols composition was observed through in depth qualitative analysis. In addition, several qualitative analyses were carried out to determine the quality of minimal processed fruit. Results Loquat fruits harvested at commercial ripening stage performed very good palatability and flesh color persistency. Late ripening fruits genotypes shown a low rate of pulp oxidation and quality decay, while early ripening fruits were not suitable for fresh-cut. Genotype had a great influence on weight loss, β-carotene content, fruit respiration, ascorbic acid and total phenols content during the shelf life. Conclusions This work shows how the amount of the composition of sugars and organic acids as an intrinsic characteristic of genotype influences the quality of loquat fruits minimal processed. The higher values of glucose, sorbitol and ascorbic acid accumulated in the cv ‘Nespolone Trabia’ contributed to a reduction in chilling injury and oxidative stress after cutting. Graphical Abstract

2022 ◽  
Dipsikha Dasgupta ◽  
Santanu Majumder ◽  
Jishnu Adhikari ◽  
Pinaki Ghosh ◽  
Diane Purchase ◽  

Abstract Inappropriate e-waste processing in the informal sector is a serious issue in developing countries. Field investigations in microscale informal recycling sites have been performed to study the impact of hazardous metal(loid)s (released from e-waste dismantling) on the environment (water and soil). Eight hazardous metal(loid)s (Pb, Cd, Cu, Zn, As, Hg, Ni and Cr) were found at elevated levels in the monitored water and soil samples (Sangrampur, West Bengal) as a consequence of widespread informal e-waste handling and primitive processing. Pd, Cu and As were found in high concentrations in water samples (1.62, 1.40, 0.03 mgL-1 respectively). Significant levels of Cu, Pd and Cd were detected in collected soil samples, both topsoil (Cu up to 2328.60 ± 217.60, Pb up to 342.90 ± 32.36 and Cd 18.34 ± 3.81 mgkg-1) and subsurface soil (2491.40 ± 276.20, 1853.33 ± 144.79, 25.90 ± 9.53 mgkg-1), compared to the levels of Zn, As, Hg, Ni and Cr. The results of seasonal variation indicated that higher levels of these hazardous meta(loids) were detected in the pre-monsoon (Nov – May) season than the rest of the year, as open dumping/burning of e-waste were practiced commonly and frequently in the monitored sites. The results highlighted that the composition and the handling of e-waste were important factors affecting the metal(loid) concentrations. E-waste policy and legislation have great influence on the handling and disposal procedures. A novel improved e-waste management practice has been proposed to encourage eco-friendly and safe e-waste disposal. It is recommended that regulatory agencies and manufacturers should create a road map to convince the informal sector to develop a systematic approach towards a more standardized formal e-waste management practices at the microscale field level.

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 151
Vicky Shettigondahalli Ekanthalu ◽  
Satyanarayana Narra ◽  
Tommy Ender ◽  
Edward Antwi ◽  
Michael Nelles

Phosphorus (P) recovery from alternative P-rich residues is essential to meet the growing demands of food production globally. Despite sewage sludge being a potential source for P, its direct application on agricultural land is controversial because of the obvious concerns related to heavy metals and organic pollutants. Further, most of the available P recovery and sludge management technologies are cost-intensive as they require mandatory dewatering of sewage sludge. In this regard, hydrothermal carbonization (HTC) has gained great attention as a promising process to effectively treat the wet sewage sludge without it having to be dewatered, and it simultaneously enables the recovery of P. This study was conducted to analyse and compare the influence of acid (H2SO4) addition during and after HTC of sewage sludge on P leaching and the characteristics of hydrochar. The obtained results suggested that despite using the same amount of H2SO4, P leaching from solid to liquid phase was significantly higher when acid was used after the HTC of sewage sludge in comparison with acid utilization during the HTC process. After HTC, the reduction in acid-buffering capacity of sewage sludge and increase in solubility of phosphate precipitating metal ions had a greater influence on the mobilization of P from solid to liquid phase. In contrast, utilization of H2SO4 in different process conditions did not have a great influence on proximate analysis results and calorific value of consequently produced hydrochar.

Fibers ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Rémy Legrand Ndoumou ◽  
Damien Soulat ◽  
Ahmad Rashed Labanieh ◽  
Manuela Ferreira ◽  
Lucien Meva’a ◽  

Plant fibers are being increasingly explored for their use in engineering polymers and composites, and many works have described their properties, especially for flax and hemp fibers. Nevertheless, the availability of plant fibers varies according to the geographical location on the planet. This study presents the first work on the mechanical properties of a tropical fiber extracted from the bast of Cola lepidota (CL) plant. After a debarking step, CL fibers were extracted manually by wet-retting. The tensile properties are first identified experimentally at the fibers scale, and the analysis of the results shows the great influence of the cross-section parameters (diameter, intrinsic porosities) on these properties. Tensile properties of CL fibers are also predicted by the impregnated fiber bundle test (IFBT). At this scale of bundles, a hackling step, which reduces shives and contributes to the parallelization of the fibers within bundles, improves tensile properties predicted by IFBT. The comparison with the properties of plant fibers given in the literature shows that CL fibers have tensile properties in the same range as kenaf, flax or hemp fibers.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 472
Qianqian Ma ◽  
Yanli Li ◽  
Jianming Xue ◽  
Dengmiao Cheng ◽  
Zhaojun Li

Here, we investigated the impact of different turning frequency (TF) on dynamic changes of N fractions, NH3 emission and bacterial/archaeal community during chicken manure composting. Compared to higher TF (i.e., turning every 1 or 3 days in CMS1 or CMS3 treatments, respectively), lower TF (i.e., turning every 5 or 7 days in CMS5 or CMS7 treatments, respectively) decreased NH3 emission by 11.42–18.95%. Compared with CMS1, CMS3 and CMS7 treatments, the total nitrogen loss of CMS5 decreased by 38.03%, 17.06% and 24.76%, respectively. Ammonia oxidizing bacterial/archaeal (AOB/AOA) communities analysis revealed that the relative abundance of Nitrosospira and Nitrososphaera was higher in lower TF treatment during the thermophilic and cooling stages, which could contribute to the reduction of NH3 emission. Thus, different TF had a great influence on NH3 emission and microbial community during composting. It is practically feasible to increase the abundance of AOB/AOA through adjusting TF and reduce NH3 emission the loss of nitrogen during chicken manure composting.

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 56
Yanjun Li ◽  
Qixu Lin ◽  
Fan Meng ◽  
Yunhao Zheng ◽  
Xiaotian Xu

In order to study the influence of tip clearance on the performance and energy dissipation of the axial-flow pump and the axial-flow pump as a turbine, and find the location of high dissipation rate, this study took an axial-flow pump model as its research object and designed four tip radial clearance schemes (0, 0.2, 1 and 2 mm). The unsteady calculation simulation of each tip clearance scheme was carried out based on CFD technology. The calculated results were compared with the experimental results, and the simulation results were analyzed using entropy production analysis theory. The results showed that, under both an axial-flow pump and axial-flow pump as turbine operating conditions, increasing the blade tip clearance led to a decrease in hydraulic performance. Compared with the 0 mm clearance, the maximum decreases in pump efficiency, head and shaft power under 2 mm tip clearance were 15.3%, 25.7% and 12.3% under the pump condition, and 12.7%, 18.5% and 28.8% under the turbine condition, respectively. Under the axial-flow pump operating condition, the change in blade tip clearance had a great influence on the total dissipation of the impeller, guide vane and outlet passage, and the maximum variation under the flow rate of 1.0 was 53.9%, 32.1% and 54.2%, respectively. Under the axial-flow pump as a turbine operating condition, the change in blade tip clearance had a great influence on the total dissipation of the impeller and outlet passage, the maximum variation under the flow rate of 1.0 was 22.7% and 17.4%, respectively. Under the design flow rate condition, with the increase in tip clearance, the dissipation rate of the blade surface showed an increasing trend under both the axial-flow pump and axial-flow pump as turbine operating conditions, and areas of high dissipation rate were generated at the rim and clearance.

Sign in / Sign up

Export Citation Format

Share Document