polynomial translation
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2019 ◽  
Vol 84 (02) ◽  
pp. 439-451
Author(s):  
RAJEEV GORÉ ◽  
JIMMY THOMSON

AbstractWe show that the polynomial translation of the classical propositional normal modal logic S4 into the intuitionistic propositional logic Int from Fernández is incorrect. We give a modified translation and prove its correctness, and provide implementations of both translations to allow others to test our results.


2013 ◽  
Vol 9 (3) ◽  
Author(s):  
Victor Khomenko ◽  
Roland Meyer ◽  
Reiner Hüchting

2006 ◽  
Vol 71 (3) ◽  
pp. 989-1001 ◽  
Author(s):  
David Fernandez

It is known that both S4 and the Intuitionistic prepositional calculus Int are P-SPACE complete. This guarantees that there is a polynomial translation from each system into the other.However, no sound and faithful polynomial translation from S4 into Int is commonly known. The problem of finding one was suggested by Dana Scott during a very informal gathering of logicians in February 2005 at UCLA. Grigori Mints then brought it to my attention, and in this paper I present a solution. It is based on Kripke semantics and describes model-checking for S4 using formulas of Int.A simple translation from Int into S4, the Gödel-Tarski translation, is wellknown; given a formula φ of Int, one obtains by prefixing □ to every subformula. For example,.That the translation is sound and faithful can be seen by considering topological semantics, which assign open sets both to □-formulas of S4 and arbitrary formulas of Int; the interpretation of φ and turn out to be identical. See Tarski's paper [6] for details. Gödel's original paper can be found in [3].In [2], Friedman and Flagg present a kind of inverse to Gödel-Tarski. Given a formula φ of S4 and a finite set of formulas Γ of Int, for each ε ∈ Γ one gets an intuitionistic formula given recursively by


Sign in / Sign up

Export Citation Format

Share Document