opposition based learning
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 163)

H-INDEX

19
(FIVE YEARS 8)

2022 ◽  
pp. 21-36
Author(s):  
Sunanda Hazra ◽  
Provas Kumar Roy

Due to the rising requirement on energy sources and the global doubts for using fossil fuel because of its consequences on the climate changes and the global warming caused by hazardous gases, the scientific research has shifted to the renewable energy. To minimize the usage of thermal power generation plants and to meet the rising load demand, a thermal-integrated wind-hydro-system is taking an important role in renewable power systems. A proficient nature-inspired optimization is proposed for solving economic and emission dispatch for the hydro-thermal-wind (HTW) scheduling problem. Further, the opposition-based learning have been incorporated with the chemical reaction optimization for improving the performance of the algorithm. To investigate the performance of oppositional chemical reaction optimization algorithm, the algorithm is tested on two different cases. Along with this, some statistical tests have also been performed. The results obtained by the OCRO algorithm are compared with other recently proposed methods to establish its robustness.


2022 ◽  
Vol 130 (3) ◽  
pp. 1-36
Author(s):  
Yaning Xiao ◽  
Xue Sun ◽  
Yanling Guo ◽  
Sanping Li ◽  
Yapeng Zhang ◽  
...  

2021 ◽  
Vol 26 (6) ◽  
pp. 577-584
Author(s):  
Jitendra Rajpurohit

Jellyfish Search Optimizer (JSO) is one of the latest nature inspired optimization algorithms. This paper aims to improve the convergence speed of the algorithm. For the purpose, it identifies two modifications to form a proposed variant. First, it proposes improvement of initial population using Opposition based Learning (OBL). Then it introduces a probability-based replacement of passive swarm motion into moves biased towards the global best. OBL enables the algorithm to start with an improved set of population. Biased moves towards global best improve the exploitation capability of the algorithm. The proposed variant has been tested over 30 benchmark functions and the real world problem of 10-bar truss structure design optimization. The proposed variant has also been compared with other algorithms from the literature for the 10-bar truss structure design. The results show that the proposed variant provides fast convergence for benchmark functions and accuracy better than many algorithms for truss structure design.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1700
Author(s):  
Shanying Lin ◽  
Heming Jia ◽  
Laith Abualigah ◽  
Maryam Altalhi

Image segmentation is a fundamental but essential step in image processing because it dramatically influences posterior image analysis. Multilevel thresholding image segmentation is one of the most popular image segmentation techniques, and many researchers have used meta-heuristic optimization algorithms (MAs) to determine the threshold values. However, MAs have some defects; for example, they are prone to stagnate in local optimal and slow convergence speed. This paper proposes an enhanced slime mould algorithm for global optimization and multilevel thresholding image segmentation, namely ESMA. First, the Levy flight method is used to improve the exploration ability of SMA. Second, quasi opposition-based learning is introduced to enhance the exploitation ability and balance the exploration and exploitation. Then, the superiority of the proposed work ESMA is confirmed concerning the 23 benchmark functions. Afterward, the ESMA is applied in multilevel thresholding image segmentation using minimum cross-entropy as the fitness function. We select eight greyscale images as the benchmark images for testing and compare them with the other classical and state-of-the-art algorithms. Meanwhile, the experimental metrics include the average fitness (mean), standard deviation (Std), peak signal to noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM), and Wilcoxon rank-sum test, which is utilized to evaluate the quality of segmentation. Experimental results demonstrated that ESMA is superior to other algorithms and can provide higher segmentation accuracy.


Author(s):  
Ayman Mutahar AlRassas ◽  
Mohammed A. A. Al-qaness ◽  
Ahmed A. Ewees ◽  
Shaoran Ren ◽  
Renyuan Sun ◽  
...  

AbstractOil production forecasting is an important task to manage petroleum reservoirs operations. In this study, a developed time series forecasting model is proposed for oil production using a new improved version of the adaptive neuro-fuzzy inference system (ANFIS). This model is improved by using an optimization algorithm, the slime mould algorithm (SMA). The SMA is a new algorithm that is applied for solving different optimization tasks. However, its search mechanism suffers from some limitations, for example, trapping at local optima. Thus, we modify the SMA using an intelligence search technique called opposition-based learning (OLB). The developed model, ANFIS-SMAOLB, is evaluated with different real-world oil production data collected from two oilfields in two different countries, Masila oilfield (Yemen) and Tahe oilfield (China). Furthermore, the evaluation of this model is considered with extensive comparisons to several methods, using several evaluation measures. The outcomes assessed the high ability of the developed ANFIS-SMAOLB as an efficient time series forecasting model that showed significant performance.


Sign in / Sign up

Export Citation Format

Share Document