scholarly journals Reexamination of tropical cyclone heat potential in the western North Pacific

2016 ◽  
Vol 121 (12) ◽  
pp. 6723-6744 ◽  
Author(s):  
Akiyoshi Wada

2018 ◽  
Vol 146 (2) ◽  
pp. 435-446 ◽  
Author(s):  
Hironori Fudeyasu ◽  
Ryuji Yoshida

Abstract The characteristics of tropical cyclones (TCs) in the summer and autumn seasons over the western North Pacific that are associated with different environmental factors that influence TC genesis (TCG) were studied. The authors objectively categorized factors into the five TCG factors classified by Ritchie and Holland: monsoon shear line (SL), monsoon confluence region (CR), monsoon gyre (GY), easterly wave (EW), and the Rossby wave energy dispersion from a preexisting TC (PTC). The GY-TCs tended to develop slowly, and the highest rates of occurrence of rapid intensification (RI) were found for the CR-TCs, whereas the GY-TCs rarely experienced RI. The average storm size of the GY-TCs at the time of formation was the largest of the averages among the TC types, while the EW- and PTC-TCs were smaller, although these differences disappeared at the mature time. There were no significant differences in the sea surface temperature (SST) beneath the TCs, but the tropical cyclone heat potential (TCHP) of the PTC-TCs was higher. The PTC-TCs tended to develop as intense TCs and exhibited favorable environmental characteristics, such as high TCHP, high convective available potential energy, and weak vertical shear. The occurrence rate of the PTC-TCs that made landfall in the Philippines was higher than the averages of the other TC types, whereas those of the EW-TCs (PTC-TCs) that made landfall in Japan (China) were lower. These results provide important information for use in disaster prevention.



2015 ◽  
Vol 28 (9) ◽  
pp. 3806-3820 ◽  
Author(s):  
Xidong Wang ◽  
Chunzai Wang ◽  
Liping Zhang ◽  
Xin Wang

Abstract This study investigates the variation of tropical cyclone (TC) rapid intensification (RI) in the western North Pacific (WNP) and its relationship with large-scale climate variability. RI events have exhibited strikingly multidecadal variability. During the warm (cold) phase of the Pacific decadal oscillation (PDO), the annual RI number is generally lower (higher) and the average location of RI occurrence tends to shift southeastward (northwestward). The multidecadal variations of RI are associated with the variations of large-scale ocean and atmosphere variables such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), relative humidity (RHUM), and vertical wind shear (VWS). It is shown that their variations on multidecadal time scales depend on the evolution of the PDO phase. The easterly trade wind is strengthened during the cold PDO phase at low levels, which tends to make equatorial warm water spread northward into the main RI region rsulting from meridional ocean advection associated with Ekman transport. Simultaneously, an anticyclonic wind anomaly is formed in the subtropical gyre of the WNP. This therefore may deepen the depth of the 26°C isotherm and directly increase TCHP over the main RI region. These thermodynamic effects associated with the cold PDO phase greatly support RI occurrence. The reverse is true during the warm PDO phase. The results also indicate that the VWS variability in the low wind shear zone along the monsoon trough may not be critical for the multidecadal modulation of RI events.



2018 ◽  
Vol 31 (21) ◽  
pp. 8917-8930 ◽  
Author(s):  
Hironori Fudeyasu ◽  
Kosuke Ito ◽  
Yoshiaki Miyamoto

This study statistically investigates the characteristics of tropical cyclones (TCs) undergoing rapid intensification (RI) in the western North Pacific in the 37 years from 1979 to 2015 and the relevant atmospheric and oceanic environments. Among 900 TCs, 201 TCs undergoing RI (RI-TCs) are detected by our definition as a wind speed increase of 30 kt (15.4 m s−1) or more in a 24-h period. RI-TCs potentially occur throughout the year, with low variation in RI-TC occurrence rate among the seasons. Conversely, the annual occurrence of RI-TC varies widely. In El Niño years, TCs tend to undergo RI mainly as a result of average locations at the time of tropical storm formation (TSF) being farther east and south, whereas TCs experience RI less frequently in La Niña years. The occurrence rates of RI-TC increased from the 1990s to the late 2000s. The RI onset time is typically 0–66 h after the TSF and the duration that satisfies the criteria of RI is 1–2 days. RI frequently occurs over the zonally elongated area around the eastern Philippine Sea. The development stage and life-span are longer in RI-TCs than in TCs that do not undergo RI. RI-TCs are small at the time of TSF and tend to develop as intense TCs as a result of environmental conditions favorable for TC development, weak vertical wind shear, high convective available potential energy, and tropical cyclone heat potential. The occurrence rates of RI-TCs that make landfall in Japan and the Philippines are higher than in China and Vietnam.





SOLA ◽  
2020 ◽  
Vol 16 (0) ◽  
pp. 1-5 ◽  
Author(s):  
Udai Shimada ◽  
Munehiko Yamaguchi ◽  
Shuuji Nishimura




Sign in / Sign up

Export Citation Format

Share Document