north pacific
Recently Published Documents


TOTAL DOCUMENTS

8568
(FIVE YEARS 1437)

H-INDEX

150
(FIVE YEARS 10)

2022 ◽  
Vol 266 ◽  
pp. 105952
Author(s):  
Xi Cao ◽  
Renguang Wu ◽  
Jing Xu ◽  
Yifeng Dai ◽  
Mingyu Bi ◽  
...  

2022 ◽  
pp. 1-59
Author(s):  
Paul J. Kushner ◽  
Russell Blackport ◽  
Kelly E. McCusker ◽  
Thomas Oudar ◽  
Lantao Sun ◽  
...  

Abstract Analyzing a multi-model ensemble of coupled climate model simulations forced with Arctic sea-ice loss using a two-parameter pattern-scaling technique to remove the cross-coupling between low- and high-latitude responses, the sensitivity to high-latitude sea-ice loss is isolated and contrasted to the sensitivity to low-latitude warming. In spite of some differences in experimental design, the Northern Hemisphere near-surface atmospheric sensitivity to sea-ice loss is found to be robust across models in the cold season; however, a larger inter-model spread is found at the surface in boreal summer, and in the free tropospheric circulation. In contrast, the sensitivity to low-latitude warming is most robust in the free troposphere and in the warm season, with more inter-model spread in the surface ocean and surface heat flux over the Northern Hemisphere. The robust signals associated with sea-ice loss include upward turbulent and longwave heat fluxes where sea-ice is lost, warming and freshening of the Arctic ocean, warming of the eastern North Pacific relative to the western North Pacific with upward turbulent heat fluxes in the Kuroshio extension, and salinification of the shallow shelf seas of the Arctic Ocean alongside freshening in the subpolar North Atlantic. In contrast, the robust signals associated with low-latitude warming include intensified ocean warming and upward latent heat fluxes near the western boundary currents, freshening of the Pacific Ocean, salinification of the North Atlantic, and downward sensible and longwave fluxes over the ocean.


2022 ◽  
pp. 1-59
Author(s):  
Ying Lu ◽  
Xianan Jiang ◽  
Philip J. Klotzbach ◽  
Liguang Wu ◽  
Jian Cao

Abstract A L2 regularized logistic regression model is developed in this study to predict weekly tropical cyclone (TC) genesis over the western North Pacific (WNP) and sub-regions of the WNP including the South China Sea (SCS), the western WNP (WWNP), and the eastern WNP (EWNP). The potential predictors for the TC genesis model include a time-varying TC genesis climatology, the Madden-Julian oscillation (MJO), the quasi-biweekly oscillation (QBWO), and ENSO. The relative importance of the predictors in a constructed L2 regression model is justified by a forward stepwise selection procedure for each region from a 0-week to a 7-week lead. Cross-validated hindcasts are then generated for the corresponding prediction schemes out to a 7-week lead. The TC genesis climatology generally improves the regional model skill, while the importance of intra-seasonal oscillations and ENSO are regionally dependent. Over the WNP, there is increased model skill over the time-varying climatology in predicting weekly TC genesis out to a 4-week lead by including the MJO and QBWO, while ENSO has a limited impact. On a regional scale, ENSO and then the MJO and QBWO respectively, are the two most important predictors over the EWNP and WWNP after the TC genesis climatology. The MJO is found to be the most important predictor over the SCS. The logistic regression model is shown to have comparable reliability and forecast skill scores to the ECMWF dynamical model on intra-seasonal time scales.


2022 ◽  
Author(s):  
Chiho Sukigara ◽  
Ryuichiro Inoue ◽  
Kanako Sato ◽  
Yoshihisa Mino ◽  
Takeyoshi Nagai ◽  
...  

Abstract. To investigate changes in ocean structure during the spring transition and responses of biological activity, two BGC-Argo floats equipped with oxygen, fluorescence (to estimate chlorophyll a concentration – Chl a), backscatter (to estimate particulate organic carbon concentration – [POC]), and nitrate sensors conducted daily vertical profiles of the water column from a depth of 2000 m to the sea surface in the western North Pacific from January to April of 2018. Data for calibrating each sensor were obtained via shipboard sampling that occurred when the floats were deployed and recovered. During the float-deployment periods, repeated meteorological disturbances passed over the study area and caused the mixed layer to deepen. After deep-mixing events, the upper layer restratified and nitrate concentrations decreased while Chl a and POC concentrations increased, suggesting that spring mixing events promote primary productivity through the temporary alleviation of nutrient and light limitation. At the end of March, POC accumulation rates and nitrate decrease rates within the euphotic zone (0–70 m) were the largest of the four events observed, ranging from +84 to +210 mmol C m−2 d−1 and –28 to –49 mmol N m−2 d−1, respectively. The subsurface consumption rate of oxygen (i.e., the degradation rate of organic matter) after the fourth event (the end of March) was estimated to be –0.62 micromol O2 kg−1 d−1. At depths of 300–400 m (below the mixed layer), the POC concentrations increased slightly throughout the observation period. The POC flux at a depth of 300 m was estimated to be 1.1 mmol C m−2 d−1. Our float observation has made it possible to observed biogeochemical parameters, which previously could only be estimated by shipboard observation and experiments, in the field and in real time.


2022 ◽  
Author(s):  
Weiyi Sun ◽  
Jian Liu ◽  
Bin Wang ◽  
Deliang Chen ◽  
Chaochao Gao

AbstractThe Pacific decadal oscillation (PDO) is the leading mode of decadal climate variability over the North Pacific. However, it remains unknown to what extent external forcings can influence the PDO’s periodicity and magnitude over the past 2000 years. We show that the paleo-assimilation products (LMR) and proxy data suggest a 20–40 year PDO occurred during both the Mediaeval Climate Anomaly (MCA, ~ 750–1150) and Little Ice Age (LIA, ~ 1250–1850) while a salient 50–70 year variance peak emerged during the LIA. These results are reproduced well by the CESM simulations in the all-forcing (AF) and single volcanic forcing (Vol) experiments. We show that the 20–40 year PDO is an intrinsic mode caused by internal variability but the 50–70 year PDO during the LIA is a forced mode primarily shaped by volcanic forcing. The intrinsic mode develops in tandem with tropical ENSO-like anomalies, while the forced mode develops from the western Pacific and unrelated to tropical sea surface temperature anomalies. The volcanism-induced land–sea thermal contrast may trigger anomalous northerlies over the western North Pacific (WNP), leading to reduced northward heat transport and the cooling in the Kuroshio–Oyashio Extension (KOE), generating the forced mode. A 50–70 year Atlantic multidecadal oscillation founded during the LIA under volcanic forcing may also contribute to the forced mode. These findings shed light on the interplay between the internal variability and external forcing and the present and future changes of the PDO.


2022 ◽  
Author(s):  
Wen Li ◽  
Xiu-Qun Yang ◽  
Jiabei Fang ◽  
Lingfeng Tao ◽  
Xiaozhuo Sang ◽  
...  

Abstract The boreal summer intraseasonal oscillation (BSISO) is the most prominent tropical subseasonal signature especially over the western North Pacific (WNP). Due to restrictions of methodology in extracting BSISO with band-pass filtering or EOF decomposition, most of the previous studies ignored the asymmetry of BSISO. This study reexamines the BSISO events over WNP and their impacts on the East Asian precipitation. With a hierarchical cluster analysis, the BSISO events over WNP during the summers of 1985-2010 are classified into two categories, the long-period (30-60 day) and short-period (10-20 day) events. The long-period BSISO events manifest as a northward propagating mode with a significant phase asymmetry characterized by a fast development, but a slow decay of the intraseasonal convection. The fast development tends to cause a rapid reversal of the atmospheric anomalies over WNP from an anomalous anticyclone induced by the preceding slow convection suppression to an anomalous cyclone, leading to a fast northeastward retreat of the preceding enhanced western North Pacific subtropical high. Accordingly, the middle and lower reaches of Yangtze River valley experience a rapid reversal from the increased precipitation to the decreased, while the precipitation in coastal South China keeps decreased. The short-period BSISO events which are symmetric in phase act as a northwestward propagating mode, mainly affecting East Asian precipitation in an oblique belt extending from southwest China to southern Japan and southern Korean Peninsula. Therefore, the two types of the BSISO events especially the asymmetric long-period BSISO events over WNP and their impacts on the East Asian precipitation revealed in this study would provide a new potential for subseasonal-to-seasonal forecast of the East Asian summer monsoon precipitation.


Author(s):  
Jie Kong ◽  
Lei Wang ◽  
Cai Lin ◽  
Fangfang Kuang ◽  
Xiwu Zhou ◽  
...  

Bacteria and microeukaryotes are extremely diverse groups in the ocean, where they regulate elemental cycling and energy flow. Studies of marine microbial ecology have benefited greatly from the rapid progress that has been made in genomic sequencing and theoretical microbial ecology.


Sign in / Sign up

Export Citation Format

Share Document