Short‐circuit current distribution analysis using a network model based on a 5×5 primitive matrix

Author(s):  
Paulo M. De Oliveira‐De Jesus ◽  
Andrés A. Rojas Quintana
Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4729
Author(s):  
Rafał Tarko ◽  
Jakub Gajdzica ◽  
Wiesław Nowak ◽  
Waldemar Szpyra

The article deals with the problems of single-phase short-circuit current distribution in overhead power lines. Short-circuit disturbances cause many negative phenomena in power networks. Since experimental studies of short-circuits in real networks are practically impossible to perform, these effects can be evaluated only theoretically, based on short-circuit current calculations with the use of appropriate mathematical models. Although short-circuit modeling is considered to be one of the simplest power system calculations, the exact mathematical description of the phenomena occurring at short-circuits is complex. Simplified normative methods are often used for short-circuit current calculations; however, this does not give ground for a thorough analysis of short-circuit current distribution in power lines. The distributions are analyzed using power line models with different degrees of complexity in line with the assumptions made for a given model. The paper presents the problem of current distribution analysis in high-voltage overhead lines for single-phase faults to the tower structures. Simulation studies were conducted on the models developed for the calculation of short-circuit currents in the high-voltage power line earthing. The objective of the analysis was to assess the validity of simplification assumptions followed by practical recommendations on the applicability of the models.


1998 ◽  
Vol 51 (1) ◽  
pp. 105-110
Author(s):  
Paulo Nubile ◽  
Antonio Fernando Beloto

2021 ◽  
Vol 266 ◽  
pp. 04002
Author(s):  
A.I. Smirnov ◽  
J.E. Shklyarskiy

The article considers electrical complexes with power plants of small capacity. The influence of power generation sources on short-circuit current distribution has been investigated. Reduced sensitivity of back-up current protection and dependence of current distribution on power plant capacity are revealed. Recommendations for minimizing false operation of short-circuit protection in networks with distributed power generation are proposed. An algorithm for adaptive current protection, which uses graph theory to determine the stages of selectivity of relay protection based on finding the shortest Dijkstra path and calculation of equivalent resistance in networks with multiple sources of power generation, which provides selec-tivity and sensitivity of current protection when changing the generated power of generators and the structure of the distribution network is pre-sented. The algorithm uses communication lines with a central control unit to monitor the distribution network and update the current triggering of the relay protection in accordance with changes in the structure of the power grid. The proposed system is designed so that it can respond to dynamic changes in the structure of the network and the state of operation of power plants. Simulation modeling in the Matlab/Simulink software package was performed and the results of the algorithm are presented.


2013 ◽  
Vol 133 (1) ◽  
pp. 37-44
Author(s):  
Suresh Chand Verma ◽  
Yoshiki Nakachi ◽  
Yoshihiko Wazawa ◽  
Yoko Kosaka ◽  
Takenori Kobayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document