The motor integration of singe-phase-supplied Variable-Speed Drives (VSDs) is prevented by the significant volume, short lifetime, and operating temperature limit of the electrolytic capacitors required to buffer the pulsating power grid. The DC-link energy storage requirement is eliminated by using the kinetic energy of the motor as a buffer. The proposed concept is called the Motor-Integrated Power Pulsation Buffer (MPPB), and a control technique and structure are detailed that meet the requirements for nominal and faulted operation with a simple reconfiguration of existing controller blocks. A 7.5 KW, motor-integrated hardware demonstrator validated the proposed MPPB concept and loss models for a scroll compressor drive used in auxiliary railway applications. The MPPB drive with a front-end CISPR 11/Class A EMI filter, PFC rectifier stage, and output-side inverter stage achieved a power density of 0.91 KW L−1 (15 W in−3). The grid-to-motor-shaft efficiency exceeded 90% for all loads over 5 kW or 66% of nominal load, with a worst-case loss penalty over a conventional system of only 17%.