Dynamic performance enhancement of grid tied PV system under abnormal grid conditions employing an effective peak current‐limiting control strategy

Author(s):  
Malakondareddy Bhoreddy ◽  
Senthilkumar Subramanium ◽  
Ammasai Gounden Nanjappagounder ◽  
Anand Isaac ◽  
Babu Natarajan
2013 ◽  
Vol 724-725 ◽  
pp. 128-131
Author(s):  
Fei Zheng ◽  
Xiao Lin Zhang ◽  
Ming Chang Ding

This paper proposes an improved LVRT control strategy based on PIR controller for grid-connected photovoltaic system under asymmetric voltage sag fault. First, the PIR current controller is designed in the positive synchronous frame without the need to decompose the positive and negative sequence components and the dynamic adjustment method for the current-reference calculation is given in order to gain a constant active power. And then, the principle how control strategies switching between the one in normal state and the other one in fault state is revealed in detail. Finally, simulations and experiment test on a 500kVA grid-connected photovoltaic inverter verify that this control strategy achieves good dynamic performance and it improves the PV inverters’ capacity of riding through asymmetric voltage sag fault effectively.


2021 ◽  
Vol 297 ◽  
pp. 01012
Author(s):  
Hicham Bahri ◽  
Mohamed Bahri ◽  
Mohamed Aboulfatah ◽  
M’hammed Guisser ◽  
El malah Mohammed ◽  
...  

This paper presents a new control strategy of a photovoltaic system, which consists of a photovoltaic generator PVG coupled to a three phase load and three phase grid by a three phase voltage source inverter VSI without DC-DC converter. The controller is designed by using Backstepping method based on d-q transformation of a new model of the global system. The main goals of this control strategy are to achieve the maximum power point MPPT with very good precision and the unity power factor in level of the grid power flow. Mathematical analysis demonstrate the asymptotic stability of the controlled system and simulation results proved that the controller has achieved all the objectives with high dynamic performance in presence of atmospheric condition changes. Moreover, the proposed controller shows a very good robustness under system disturbance, which presents the most important advantage of this controller compared to the other control strategies. Furthermore, this controller can operate with a high efficiency with any kind of the load.


Sign in / Sign up

Export Citation Format

Share Document