scholarly journals Li‐Ion Batteries: Understanding the Outstanding High‐Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte (Adv. Energy Mater. 14/2021)

2021 ◽  
Vol 11 (14) ◽  
pp. 2170053
Author(s):  
Sven Klein ◽  
Stefan van Wickeren ◽  
Stephan Röser ◽  
Peer Bärmann ◽  
Kristina Borzutzki ◽  
...  
Recycling ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 35
Author(s):  
Agnieszka Sobianowska-Turek ◽  
Weronika Urbańska ◽  
Anna Janicka ◽  
Maciej Zawiślak ◽  
Jędrzej Matla

The automotive industry is one of the fastest-growing sectors of the modern economy. Growing customer expectations, implementing solutions related to electromobility, and increasingly stringent legal restrictions in the field of environmental protection, determine the development and introduction of innovative technologies in the field of car production. To power the most modern vehicles that include electric and hybrid cars, packages of various types of lithium-ion cells are used, the number of which is constantly growing. After use, these batteries, due to their complex chemical composition, constitute hazardous waste that is difficult to manage and must be recycled in modern technological lines. The article presents the morphological characteristics of the currently used types of Li-ion cells, and the threats to the safety of people and the environment that may occur in the event of improper use of Li-ion batteries and accumulators have been identified and described on the basis of the Regulation of the European Parliament and Council (EC) No. 1272/2008 of 16 December 2008 and No. 1907/2006 of 18 December 2006 on the classification, labeling and packaging of substances and mixtures and the registration, evaluation, authorization and restriction of chemicals (REACH), establishing the European Chemicals Agency.


2020 ◽  
Vol 10 (15) ◽  
pp. 2070069
Author(s):  
Koeun Kim ◽  
Daeyeon Hwang ◽  
Saehun Kim ◽  
Sung O Park ◽  
Hyungyeon Cha ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 2732-2748 ◽  
Author(s):  
Nam-Soon Choi ◽  
Jung-Gu Han ◽  
Se-Young Ha ◽  
Inbok Park ◽  
Chang-Keun Back

We present the useful processes in the research of functional electrolytes for interfacial stability of high-voltage cathodes in Li-ion batteries.


Ionics ◽  
2015 ◽  
Vol 22 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Xiaoxi Zuo ◽  
Junhua Wu ◽  
Minkai Zhao ◽  
Chengyun Wang ◽  
Jiansheng Liu ◽  
...  

2019 ◽  
Vol 22 (1) ◽  
Author(s):  
Linh Thi-My Le ◽  
Thanh Duy Vo ◽  
Hoang Van Nguyen ◽  
Quan Phung ◽  
Man Van Tran ◽  
...  

Introduction: Ionic liquids (ILs) have become a prospective candidate to replace the conventional electrolytes based on the volatile organic-solvents in lithium-ion batteries. However, the drawbacks of high viscosity and low ionic conductivity have restricted the high rate capacity and energy density in practical batteries. With the aims to resolve these problems and design a safe electrolytes with high electrochemical stability, mixtures of ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMITFSI) with different amounts of ethylene carbonate (EC) was prepared and characterized as electrolytes for Li-ion batteries. Methods: In this work, we investigated four factors to demonstrate the performance of EMITFSI as electrolytes for Li-ion batteries. These factors include: thermal properties of mixed electrolytes (Mettler Toledo DSC1 Star -DSC, Q500-TGA), Conductivity (HP- AC impedance spectroscopy), Viscosity (Ostwald viscometer CANNON) and electrochemical window (cyclic voltammetry-MGP2 Biologic Instrument). All experiments were repeated three times with the exception of TGA-DSC methods. Results: The study indicated that 20 % wt. ethylene carbonate (EC) when mixed with EMITFSI could significantly decrease the electrolyte viscosity while improving ionic conductivity and maintain similar electrochemical stability as pure ionic liquid. Lithium diffusion coefficient of mixed electrolytes was lower than commercial electrolytes based on conventional solvents, however, the thermal stability was enhanced. Conclusion: EMITFSI can be used to replace conventional carbonate-based liquids as a high-performance electrolyte for Li-ion batteries.  


Sign in / Sign up

Export Citation Format

Share Document