electrochemical window
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 78)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Xue Han ◽  
Min Wang ◽  
Jingxian Yu ◽  
Shengping Wang

The reversible layered structure of TiS2 with relaxation, such as a spring, was obtained by controlling the optimized potential range of 0.9-2.8 V (vs. Li+/Li) to yield high discharge capacity,...


Author(s):  
Yuning Zhang ◽  
Hao Jiang ◽  
Dongfang Niu ◽  
Manke Ingo ◽  
Chao Yang ◽  
...  

Nitrogen-doped carbon nanomaterials for electrochemical reduction of CO2 (CO2ER) to CO have been extensively investigated, evaluated, and applied recently. Nevertheless, their weak adsorption capacity for CO2 usually results in a...


2021 ◽  
Author(s):  
Xinyu Zeng ◽  
Yu Liu ◽  
Rulei He ◽  
Tongyuan Li ◽  
Yuqin Hu ◽  
...  

Abstract With the development of energy-storage devices, separator is encountered by several challenges including adequate safety, higher current density and superior stability. Tissue paper, composed of packed cellulose fibers, possesses lower production cost, more easily accessibility, superior wettability and outstanding thermostability, thus being prospective as a substrate of high performance separator. To address structure collapse phenomenon occurred in conventional coating layer after long term electrolyte swelling, nano-SiO2 hybrid crosslinked network was constructed on tissue paper through chemical reactions between polymer poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and hyperbranched polyethyleneimine (PEI) in this work. The influences of crosslinking degree on physical properties and electrochemical performance were studied thoroughly. It can be found that when the crosslinking ratio of PVDF-HFP and PEI fixed at 10:1, the crosslinked composite separator displays excellent electrolyte uptake and wettability, superior ionic conductivity, better interfacial compatibility as well as higher Li+ transference number (0.56), thus offering battery with prominent rate capabilities. Besides, this crosslinked composite separator exhibits satisfying dimensional stability even treated at 250 oC, better flame retardancy, enhanced mechanical behavior, wider electrochemical window and outstanding cycle stability. Accordingly, tissue paper-based crosslinked composite separator can meet higher requirements put forward by high power lithium ion battery.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 75
Author(s):  
Shuo Yan ◽  
Chae-Ho Yim ◽  
Vladimir Pankov ◽  
Mackenzie Bauer ◽  
Elena Baranova ◽  
...  

Solid-state lithium metal batteries (LMBs) have become increasingly important in recent years due to their potential to offer higher energy density and enhanced safety compared to conventional liquid electrolyte-based lithium-ion batteries (LIBs). However, they require highly functional solid-state electrolytes (SSEs) and, therefore, many inorganic materials such as oxides of perovskite La2/3−xLi3xTiO3 (LLTO) and garnets La3Li7Zr2O12 (LLZO), sulfides Li10GeP2S12 (LGPS), and phosphates Li1+xAlxTi2−x(PO4)3x (LATP) are under investigation. Among these oxide materials, LLTO exhibits superior safety, wider electrochemical window (8 V vs. Li/Li+), and higher bulk conductivity values reaching in excess of 10−3 S cm−1 at ambient temperature, which is close to organic liquid-state electrolytes presently used in LIBs. However, recent studies focus primarily on composite or hybrid electrolytes that mix LLTO with organic polymeric materials. There are scarce studies of pure (100%) LLTO electrolytes in solid-state LMBs and there is a need to shed more light on this type of electrolyte and its potential for LMBs. Therefore, in our review, we first elaborated on the structure/property relationship between compositions of perovskites and their ionic conductivities. We then summarized current issues and some successful attempts for the fabrication of pure LLTO electrolytes. Their electrochemical and battery performances were also presented. We focused on tape casting as an effective method to prepare pure LLTO thin films that are compatible and can be easily integrated into existing roll-to-roll battery manufacturing processes. This review intends to shed some light on the design and manufacturing of LLTO for all-ceramic electrolytes towards safer and higher power density solid-state LMBs.


Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 414
Author(s):  
Pushpesh Ranjan ◽  
Shalu Yadav ◽  
Mohd. Abubakar Sadique ◽  
Raju Khan ◽  
Jamana Prasad Chaurasia ◽  
...  

Ionic liquids are gaining high attention due to their extremely unique physiochemical properties and are being utilized in numerous applications in the field of electrochemistry and bio-nanotechnology. The excellent ionic conductivity and the wide electrochemical window open a new avenue in the construction of electrochemical devices. On the other hand, carbon nanomaterials, such as graphene (GR), graphene oxide (GO), carbon dots (CDs), and carbon nanotubes (CNTs), are highly utilized in electrochemical applications. Since they have a large surface area, high conductivity, stability, and functionality, they are promising in biosensor applications. Nevertheless, the combination of ionic liquids (ILs) and carbon nanomaterials (CNMs) results in the functional ILs-CNMs hybrid nanocomposites with considerably improved surface chemistry and electrochemical properties. Moreover, the high functionality and biocompatibility of ILs favor the high loading of biomolecules on the electrode surface. They extremely enhance the sensitivity of the biosensor that reaches the ability of ultra-low detection limit. This review aims to provide the studies of the synthesis, properties, and bonding of functional ILs-CNMs. Further, their electrochemical sensors and biosensor applications for the detection of numerous analytes are also discussed.


Author(s):  
P. M. Gonzalez Puente ◽  
Shangbin Song ◽  
Shiyu Cao ◽  
Leana Ziwen Rannalter ◽  
Ziwen Pan ◽  
...  

AbstractAll-solid-state lithium batteries (ASSLBs), which use solid electrolytes instead of liquid ones, have become a hot research topic due to their high energy and power density, ability to solve battery safety issues, and capabilities to fulfill the increasing demand for energy storage in electric vehicles and smart grid applications. Garnet-type solid electrolytes have attracted considerable interest as they meet all the properties of an ideal solid electrolyte for ASSLBs. The garnet-type Li7La3Zr2O12 (LLZO) has excellent environmental stability; experiments and computational analyses showed that this solid electrolyte has a high lithium (Li) ionic conductivity (10−4–10−3 S·cm−1), an electrochemical window as wide as 6 V, stability against Li metal anode, and compatibility with most of the cathode materials. In this review, we present the fundamentals of garnet-type solid electrolytes, preparation methods, air stability, some strategies for improving the conductivity based on experimental and computational results, interfacial issues, and finally applications and challenges for future developments of LLZO solid electrolytes for ASSLBs.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Caiyun Wang ◽  
Yao Huang ◽  
Yunhao Lu ◽  
Hongge Pan ◽  
Ben Bin Xu ◽  
...  

AbstractMagnesium metal anode holds great potentials toward future high energy and safe rechargeable magnesium battery technology due to its divalent redox and dendrite-free nature. Electrolytes based on Lewis acid chemistry enable the reversible Mg plating/stripping, while they fail to match most cathode materials toward high-voltage magnesium batteries. Herein, reversible Mg plating/stripping is achieved in conventional carbonate electrolytes enabled by the cooperative solvation/surface engineering. Strongly electronegative Cl from the MgCl2 additive of electrolyte impairs the Mg…O = C interaction to reduce the Mg2+ desolvation barrier for accelerated redox kinetics, while the Mg2+-conducting polymer coating on the Mg surface ensures the facile Mg2+ migration and the effective isolation of electrolytes. As a result, reversible plating and stripping of Mg is demonstrated with a low overpotential of 0.7 V up to 2000 cycles. Moreover, benefitting from the wide electrochemical window of carbonate electrolytes, high-voltage (> 2.0 V) rechargeable magnesium batteries are achieved through assembling the electrode couple of Mg metal anode and Prussian blue-based cathodes. The present work provides a cooperative engineering strategy to promote the application of magnesium anode in carbonate electrolytes toward high energy rechargeable batteries.


2021 ◽  
Author(s):  
Mark Stockham ◽  
Alice Griffiths ◽  
Bo Dong ◽  
Peter Slater

Lithium garnets are promising solid-state electrolytes for next generation lithium-ion batteries. These materials have high ionic conductivity, a wide electrochemical window and stability with Li metal. However, lithium garnets have a maximum limit of 7 lithium atoms per formula unit (e.g. La3Zr2Li7O12), before the system transitions from a cubic to a tetragonal phase with poor ionic mobility. This arises from full occupation of the Li sites. Hence, the most conductive lithium garnets have Li between 6-6.55 Li per formula unit, which maintains the cubic symmetry and the disordered Li sub-lattice. The tetragonal phase, however, forms the highly conducting cubic phase at higher temperatures, thought to arise from increased cell volume and entropic stabilisation permitting Li disorder. However, little work has been undertaken in understanding the controlling factors of this phase transition, which could enable enhanced dopant strategies to maintain room temperature cubic garnet at higher Li contents. Here, a series of nine tetragonal garnets were synthesised and analysed via variable temperature XRD to understand the dependence of site substitution on the phase transition temperature. Interestingly the octahedral site cation radius was identified as the key parameter for the transition temperature with larger or smaller dopants altering the transition temperature noticeably. A site substitution was, however, found to make little difference irrespective of significant changes to cell volume.


Sign in / Sign up

Export Citation Format

Share Document