ChemInform Abstract: 13C and 15N NMR Spectra of Oximes Prepared by Nitrosation of Activated Methylene Group

ChemInform ◽  
1990 ◽  
Vol 21 (18) ◽  
Author(s):  
J. JIRMAN ◽  
A. LYCKA ◽  
M. LUDWIG
Keyword(s):  
15N Nmr ◽  
1990 ◽  
Vol 55 (1) ◽  
pp. 136-146 ◽  
Author(s):  
Josef Jirman ◽  
Antonín Lyčka ◽  
Miroslav Ludwig

15N and 13C NMR spectra have been measured of the compounds type XC(=NOH)Y, where X, Y = COCH3, CN, COOR, CONHR, and X +Y = C6H4(CO)2. The (E)-(Z) isomerism at the C=NOH bond has been studied by means of 15N labelling and stereospecific behaviour of the 2J(15N, 13C) coupling constants. The nitrosation of methyl cyanoacetate gives specifically the respective (E)-oxime, whereas that of acetoacetanilide gives the (Z)-isomer. The nitrosation of ethyl acetoacetate gives both (E)- and (Z)-oximes in a ratio of ca 1:10; the (E)-isomer is less stable and is transformed into the (Z)-isomer. The applicability of the 1J(13C, 13C) coupling constants and lanthanoid shift reagents to the study of (E)-(Z) isomerism of oximes with geminal carbonyl groups has also been verified. The 15N NMR chemical shifts of the oximes studied correlate with their respective pKa values measured in dimethyl sulfoxide according to the equation pKa = -0.11δ15N + 13.44.


1996 ◽  
Vol 61 (4) ◽  
pp. 589-596 ◽  
Author(s):  
Antonín Lyčka

The 1H, 13C and 15N NMR spectra have been measured of coupling products of benzenediazonium salts with nitromethane, nitroethane, 1-nitropropane, 2-nitroethanol and of their sodium salts, and the chemical shifts have been unambiguously assigned. The coupling products have been found to exist only in their hydrazone tautomeric forms. Stereospecific behaviour of the coupling constants 2J(15N,1H) and 2J(15N,13C) in the 15N isotopomers and NOESY have been used to differentiate between the E and Z geometrical isomers. The above-mentioned compounds exist as Z isomers in deuteriochloroform and predominantly (>95%) as E isomers in dimethyl sulfoxide, while the sodium salts are present only as E isomers in dimethyl sulfoxide.


2006 ◽  
Vol 44 (5) ◽  
pp. 521-523 ◽  
Author(s):  
Antonín Lyčka ◽  
Roman Doleček ◽  
Petr Šimûnek ◽  
Vladimír Macháček

1985 ◽  
Vol 63 (3) ◽  
pp. 601-604 ◽  
Author(s):  
Hans J Jakobsen ◽  
Ulla B Sørensen ◽  
Henrik Bildsøe ◽  
Ole W Sørensen

1985 ◽  
Vol 58 (11) ◽  
pp. 3407-3408 ◽  
Author(s):  
Yoshio Odaka ◽  
Akira Yamasaki ◽  
Masatoshi Watabe
Keyword(s):  

2020 ◽  
Author(s):  
Abdulbasit Haliru Yakubu ◽  
Iliya Ibrahim ◽  
Abdulqadir bukar bababe ◽  
Hassan Yesufu ◽  
mohammed Garba Tom

<p><i>Cyphostemma adenocaule </i>(Steud. ex A. Rich.) is one of the specie plant that belongs to the family vitacea. In this study, Trilinolein was isolated and characterized from the methanol root extract of the plant. Column chromatography over silica gel granules as the stationary phase and eluted with a mobile phase mixture of n-Hex-EtA; EtA-CHCL3 and CHCL<sub>3</sub>-MeOH with gradient increasing polarity, followed by a second column using saphadex-LH20 and 100% MeOH as stationary and mobile phase vehicle respectively. TLC was developed with EtA 15: CHCL3<sub> </sub>8: MeOH 4: H<sub>2</sub>O 1 as solvent system; sprayed with 10% H<sub>2</sub>SO<sub>4 </sub>,Vanillin-sulphuric acid, and/ or Polyethylene glycol PEG and heat for spot detection and confirmation of bioactive principles. Compound CA1 was obtained and purified with CHCL3 to give a yellow semi-solid compound (0.23g). The <sup>1</sup>H-NMR spectra showed 9 different signals; a signal peak of a glycerol (-C<b>H<sub>2</sub></b>OCOR-) moiety on the first α-C chain and on the third αʹ-C at 4.143-4.187ppm and 4.296-4.325ppm respectively, while that of a β glycerol (-C<b>H</b>COR-) at 5.286ppm. Signals of an allylic methylene group at 2.023-2.035ppm, Olefenic hydrogen group at signal peak of 5.362ppm and a diallylic methylene group at signal 2.790ppm were also observed. In the <sup>13</sup>C NMR spectra of compound CA1, 57 carbon atoms where observed, multiple signals overlapping at a range of 14.13-34.21ppm corresponding to the aliphatic CH3 (<b>C18</b>), CH2 (<b>C2, C3, C4, C5, C6, C7, C15, C16, and C17</b>) and allylic (<b>C8, C14</b>) carbon atoms. Signals at 127.90-130.24ppm were assigned to the olefienic C atoms (<b>C9, C10, C12</b>, and <b>C13</b>) while signal of 172.87ppm and 173.32ppm were assigned to the carbonyl (<b>C</b>=O) carbon atoms (<b>C1 </b>and<b> C2</b>) respectively (Table 2). </p> <p>Analysis with DEPT-135, H-H COSY, HMBC and HSQC assignments of CA1 augments assignment of signals made for CA1 from <sup>1</sup>H-NMR and <sup>13</sup>C-NMR and corresponded to that of Trilinolein <u>(<a href="https://pubchem.ncbi.nlm.nih.gov/#query=C57H98O6">C<sub>57</sub>H<sub>98</sub>O<sub>6</sub></a>, </u>MW 879.4 g/mol). The isolated compound was positive for the acrolein test for triglycerides; fat & oil and had an IC<sub>50</sub> of 46.08µg/ml radical scavenging activity.</p>


Author(s):  
Chiseko Sakuma ◽  
Mikiko Maeda ◽  
Katsumi Tabei ◽  
Akihiro Ohta ◽  
Ablikim Kerim ◽  
...  
Keyword(s):  

1987 ◽  
Vol 42 (12) ◽  
pp. 1515-1519 ◽  
Author(s):  
Carin Stader ◽  
Bernd Wrackmeyer

AbstractThe basic INEPT pulse sequence proved most useful for recording 15N NMR spectra at natural abundance of bis(amino)stannvlenes (1). -plumbylenes (2) and of imino-amino-λ2-phosphanes (3), where the nitrogen atoms carry bulky substituents like Me3Si-, t-Bu-, 2.4.4-trimethyl-2- pentyl-groups (t-Oct-groups) or are part of the 2.2.6.6-tetramethylpiperidinyl group. The sensitiv­ity of this technique is proved by the observation of 117/119Sn or 207Pb satellites owing to spin-spin coupling constants 1J(117/119Sn15N) and 1J(117/119Pb15N), respectively. NMR data of bis[bis(trimethylsilyl)methyl]tin (4) are reported in order to corroborate the arguments for the interpretation of the δ(15N) and 1J(119Sn15N) data. The 15N NMR data of the λ2-phosphanes (3) indicate a bonding situation similar to that in triazenes.


Sign in / Sign up

Export Citation Format

Share Document