imidazolium cations
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 41)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Matthew Jordan ◽  
Tanmay Kulkarni ◽  
Dodangodage Senadheera ◽  
Revati Kumar ◽  
Yupo Lin ◽  
...  

Abstract Most commercial anion exchange membranes (AEMs) deploy quaternary ammonium moieties. Alternative cation moieties have been explored in AEMs for fuel cells, but there are no studies focused examining alternative tethered cations in AEMs for ionic separations – such as organic acid anion transport via electrodialysis. H-cell and conductivity experiments demonstrate that tethered benzyl 1-methyl imidazolium groups in polysulfone AEMs enhance lactate conductivity by 49% and improved lactate anion flux by 24x when compared to a quaternary benzyl ammonium polysulfone AEM. An electrodialysis demonstration with the imidazolium-type AEM showed a 2x improvement in lactate anion flux and 20% improvement in permselectivity when benchmarked against the quaternary ammonium AEM. Molecular dynamics and 2D NOESY NMR revealed closer binding of lactate anions to the imidazolium cations when compared to the quaternary ammonium cation. It is posited that this closer binding is responsible to greater flux values observed with imidazolium-type AEM.


2022 ◽  
Author(s):  
Dorota Kowalska ◽  
Stefan Stolte ◽  
Dariusz Wyrzykowski ◽  
Piotr Stepnowski ◽  
Joanna Dołżonek

AbstractBioaccumulation potential is critical in PBT and risk assessment of chemicals. However, for ionic liquids (ILs), this aspect remains neglected. It is especially important to fill this gap, because for this group of compounds, existing data confirm their risk of being environmentally persistent and toxicity. Moreover, considering preliminary reports on the interactions of ILs with lipids, it may be assumed that ILs have a higher potential for bioaccumulation than indicated by previous estimations built upon octanol–water partition coefficients. Moreover, the bioconcentration of ionizable chemical compounds may also be strongly related to plasma protein contents. Therefore, in this work, the affinity of a set of imidazolium cations and organic anions, and their combination to human serum albumin (HSA) was determined. The obtained results reveal that both cations and anions can be strongly bound to HSA, and blood proteins might play an important role in overall bioaccumulation. Furthermore, it was observed that HSA binding properties towards IL cations depend on the hydrophobicity of cations. The obtained data also provide indication that cation–anion interaction may affect ILs ions affinity to HSA.


Author(s):  
Md Tauhidur Rahman ◽  
Berihun Mamo Negash ◽  
David Kwaku Danso ◽  
Alamin Idris ◽  
Ahmed Abdulla Elryes ◽  
...  

AbstractWater-based fracturing fluids without an inhibitor promote clay swelling, which eventually creates wellbore instability. Several ionic liquids (ILs) have been studied as swelling inhibitors in recent years. The cations of the ILs are crucial to the inhibitory mechanisms that take place during hydraulic fracturing. Individual studies were carried out on several ILs with various cations, with the most frequently found being ammonium and imidazolium cations. As a result, the goal of this study is to compare these two cations to find an effective swelling inhibitor. A comparison and evaluation of the clay swelling inhibitory properties of tetramethylammonium chloride (TMACl) and 1-ethyl-3-methylimidazolium chloride (EMIMCl) were conducted in this work. Their results were also compared to a conventional inhibitor, potassium chloride (KCl), to see which performed better. The linear swelling test and the rheology test were used to determine the inhibitory performance of these compounds. Zeta potential measurements, Fourier-transform infrared spectroscopy, and contact angle measurements were carried out to experimentally explain the inhibitory mechanisms. In addition, the COSMO-RS simulation was conducted to explain the inhibitory processes and provide support for the experimental findings. The findings of the linear swelling test revealed that the swelling was reduced by 23.40% and 15.66%, respectively, after the application of TMACl and EMIMCl. The adsorption of ILs on the negatively charged clay surfaces, neutralizing the charges, as well as the lowering of the surface hydrophilicity, aided in the improvement of the swelling inhibition performance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yong Hu ◽  
Zhiyu Liu ◽  
Chi-Chin Wu ◽  
Jennifer L. Gottfried ◽  
Rose Pesce-Rodriguez ◽  
...  

AbstractChemically driven thermal wave triggers high energy release rate in covalently-bonded molecular energetic materials. Molecular ferroelectrics bridge thermal wave and electrical energy by pyroelectric associated with heating frequency, thermal mass and heat transfer. Herein we design energetic molecular ferroelectrics consisting of imidazolium cations (energetic ion) and perchlorate anions (oxidizer), and describe its thermal wave energy conversion with a specific power of 1.8 kW kg−1. Such a molecular ferroelectric crystal shows an estimated detonation velocity of 7.20 ± 0.27 km s−1 comparable to trinitrotoluene and hexanitrostilbene. A polarization-dependent heat transfer and specific power suggests the role of electron-phonon interaction in tuning energy density of energetic molecular ferroelectrics. These findings represent a class of molecular ferroelectric energetic compounds for emerging energy applications demanding high power density.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 454
Author(s):  
Aruna Kumar Mohanty ◽  
Young-eun Song ◽  
Jung-rae Kim ◽  
Nowon Kim ◽  
Hyun-jong Paik

A class of phenolphthalein anilide (PA)-based poly(ether sulfone) multiblock copolymers containing pendant quaternary ammonium (QA) and imidazolium (IM) groups were synthesized and evaluated as anion exchange membrane (AEM) materials. The AEMs were flexible and mechanically strong with good thermal stability. The ionomeric multiblock copolymer AEMs exhibited well-defined hydrophobic/hydrophilic phase-separated morphology in small-angle X-ray scattering and atomic force microscopy. The distinct nanophase separated membrane morphology in the AEMs resulted in higher conductivity (IECw = 1.3–1.5 mequiv./g, σ(OH−) = 30–38 mS/cm at 20 °C), lower water uptake and swelling. Finally, the membranes were compared in terms of microbial fuel cell performances with the commercial cation and anion exchange membranes. The membranes showed a maximum power density of ~310 mW/m2 (at 0.82 A/m2); 1.7 and 2.8 times higher than the Nafion 117 and FAB-PK-130 membranes, respectively. These results demonstrated that the synthesized AEMs were superior to Nafion 117 and FAB-PK-130 membranes.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2676
Author(s):  
Tim Peppel ◽  
Martin Köckerling

A series of new low-melting triply charged homoleptic Cr(III)-based ionic liquids of the general formula (RMIm)3[Cr(NCS)6] (R = methyl, ethyl, n-butyl, benzyl) is reported. Their syntheses and properties are described in comparison to their singly charged heteroleptic analogues of the general formula (RMIm)[Cr(NCS)4L2] (R = methyl, ethyl, n-butyl, benzyl; L = pyridine, γ-picoline). In total, sixteen new Reineckate related salts with large imidazolium cations are described. Out of these, five compounds were crystallized, and their structures determined by single-crystal X-ray structure analyses. They all consisted of discrete anions and cations with octahedrally coordinated Cr(III) ions. In the structures, various hydrogen contacts interconnect the entities to build up hydrogen bonded networks. Thermal investigations showed relatively low melting points for the homoleptic complexes. The compounds with the [Cr(NCS)6]3− anion melt without decomposition and are stable up to 200 K above their melting points. The complex salts with the [Cr(NCS)4L2]− anion, in contrast, start to decompose and lose L molecules (Pyr or Pic) already at the melting point.


Sign in / Sign up

Export Citation Format

Share Document