h nmr
Recently Published Documents





2022 ◽  
Vol 0 (0) ◽  
Zafer Sahin ◽  
Yağmur Özhan ◽  
Hande Sipahi ◽  
Sevde Nur Biltekin ◽  
Leyla Yurttaş ◽  

Abstract Novel benzofurane-pyrazolone hybrids have been synthesized for evaluating their anti-inflammatory and cytotoxic properties. 4-(2-chloroacetyl)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one were reacted with α-hydroxy aldehyde or α-hydroxy ketone derivatives to obtain nine novel pyrazolone derivatives. Structures were successfully elucidated by 1H NMR, 13C NMR, IR and HRMS. Enzyme inhibitory activity was measured on cyclooxygenases (COXs) as considered to address anti-inflammatory activity. Compound 2 showed the highest activity on both COX-1 and COX-2 subtypes with 12.0 μM and 8.0 μM IC50, respectively. This activity was found close to indomethacin COX-2 inhibition measured as 7.4 μM IC50. Rest of the compounds (1, 3–9) showed 10.4–28.1 μM IC50 on COX-2 and 17.0–35.6 μM IC50 on COX-1 (Compound 1 has no activity on COX-1). Tested compounds (1–9) showed activity on NO production. Only compound was the 4, which showed a low inhibition on IL-6 levels. Cell viability was up to 60% at 100 μM for all compounds (1–9) on RAW 264.7 and NIH3T3 cell lines, thus compounds were reported to be noncytotoxic.

Paulina Kalle ◽  
Sergei V. Tatarin ◽  
Marina A. Kiseleva ◽  
Alexander Yu. Zakharov ◽  
Daniil E. Smirnov ◽  

The title compounds, 2-(4-methylphenyl)-1H-perimidine hemihydrate (1, C18H14N2·0.5H2O) and 1-methyl-2-(4-methylphenyl)-1H-perimidine (2, C19H16N2), were prepared and characterized by 1H NMR and single-crystal X-ray diffraction. The organic molecule of the hemihydrate lies on a twofold rotation axis while the water molecule lies on the intersection of three twofold rotation axes (point group symmetry 222). As a consequence, the hydrogen atoms that are part of the N—H group and the water molecule as well as the CH3 group of the p-tolyl ring are disordered over two positions. In compound 1, the perimidine and the 2-aryl rings are slightly twisted while its N-methylated derivative 2 has a more distorted conformation because of the steric repulsion between the N-methyl group and the 2-aryl ring. In the crystal structures, molecules of perimidine 2 are held together only by C—H...π contacts while the parent perimidine 1 does not exhibit this type of interaction. Its crystal packing is established by intermolecular N—H...O hydrogen bonds with the solvent water molecules and additionally stabilized by π–π stacking.

2022 ◽  
Vol 12 ◽  
Anurag Kumar Gautam ◽  
Pranesh Kumar ◽  
Ritu Raj ◽  
Dinesh Kumar ◽  
Bolay Bhattacharya ◽  

Hepatocellular carcinoma (HCC) is one of the most common tumors affecting a large population worldwide, with the fifth and seventh greatest mortality rates among men and women, respectively, and the third prime cause of mortality among cancer victims. Dimethyl itaconate (DI) has been reported to be efficacious in colorectal cancer by decreasing IL-1β release from intestinal epithelial cells. In this study, diethylnitrosamine (DEN)-induced HCC in male albino Wistar rats was treated with DI as an anticancer drug. The function and molecular mechanism of DI against HCC in vivo were assessed using histopathology, enzyme-linked immunosorbent assay (ELISA), and Western blot studies. Metabolomics using 1H-NMR was used to investigate metabolic profiles. As per molecular insights, DI has the ability to trigger mitochondrial apoptosis through iNOS- and eNOS-induced activation of the NF-κB/Bcl-2 family of proteins, CytC, caspase-3, and caspase-9 signaling cascade. Serum metabolomics investigations using 1H-NMR revealed that aberrant metabolites in DEN-induced HCC rats were restored to normal following DI therapy. Furthermore, our data revealed that the DI worked as an anti-HCC agent. The anticancer activity of DI was shown to be equivalent to that of the commercial chemotherapeutic drug 5-fluorouracil.

Olga Yu. Vassilyeva ◽  
Elena A. Buvaylo ◽  
Vladimir N. Kokozay ◽  
Sergey L. Studzinsky ◽  
Brian W. Skelton ◽  

The new molecular nickel(II) complex, namely, {4-bromo-2-[({N′-[(2-oxidobenzylidene)amino]carbamimidoyl}imino)methyl]phenolato}nickel(II) N,N-dimethylformamide solvate monohydrate, [Ni(C15H11BrN4O2)]·C3H7NO·H2O, (I), crystallizes in the triclinic space group P\overline{1} with one molecule per asymmetric unit. The guanidine ligand is a product of Schiff base condensation between aminoguanidine, salicylaldehyde and 5-bromosalicylaldehyde templated by Ni2+ ions. The chelating ligand molecule is deprotonated at the phenol O atoms and coordinates the metal centre through the two azomethine N and two phenolate O atoms in a cis-NiN2O2 square-planar configuration [average(Ni—N/O) = 1.8489 Å, cis angles in the range 83.08 (5)–95.35 (5)°, trans angles of 177.80 (5) and 178.29 (5)°]. The complex molecule adopts an almost planar conformation. In the crystal, a complicated hydrogen-bonded network is formed through N—H...N/O and O—H...O intermolecular interactions. Complex (I) was also characterized by FT–IR and 1H NMR spectroscopy. It undergoes an NiII ↔ NiIII redox reaction at E 1/2 = +0.295 V (vs Ag/AgCl) in methanol solution. In a thin film with a free surface, complex (I) shows a fast photoelectric response upon exposure to visible light with a maximum photovoltage of ∼178 mV.

Alberto Chighine ◽  
Michele Porcu ◽  
Giulio Ferino ◽  
Nicola Lenigno ◽  
Claudia Trignano ◽  

AbstractA case report suspicious for a Sudden Infant Death Syndrome is here described. Pathological findings were consistent with an acute respiratory failure while toxicological analysis revealed an elevated blood methadone concentration. Death was then ascribed to an acute methadone intoxication. In addition to the routinary approach, the urinary sample collected at autopsy was investigated with a 1H NMR metabolomic approach and the identified metabolomic profile was challenged with the urinary metabolomic profiles previously obtained from 10 newborns who experienced perinatal asphyxia and 16 healthy control newborns. Intriguingly, the urinary profile of the methadone intoxicated infant was very similar to those belonging to the perinatal asphyxia newborns, especially to those belonging to the newborns characterised by the worst outcome. The results offer several hints on a shared metabolic derangement between different mechanisms of asphyxia/hypoxia. To the best of the authors’ knowledge, this is the first report of the use of a metabolomic approach in a pathological case, in which metabolomics offers useful additional information regarding the mechanism and the cause of death.

2022 ◽  
Vol 12 ◽  
Juan Moreno-Vedia ◽  
Roser Rosales ◽  
Enrique Ozcariz ◽  
Dídac Llop ◽  
Maribel Lahuerta ◽  

High plasma triglyceride (TG) levels and chronic inflammation are important factors related to metabolic-associated fatty liver disease in patients at cardiovascular risk. Using nuclear magnetic resonance (1H-NMR), we aimed to study the triglyceride-rich lipoprotein (TRL) and acute-phase glycoprotein profiles of a cohort of patients with metabolic disease and their relationship with fatty liver. Plasma samples of 280 patients (type 2 diabetes, 81.1%; obesity, 63.3%; and metabolic syndrome, 91.8%) from the University Hospital Lipid Unit were collected for the measurement of small, medium and large TRL particle numbers and sizes and glycoprotein profiles (Glyc-A and Glyc-B) by 1H-NMR. Liver function parameters, including the fatty liver index (FLI) and fibrosis-4 (FIB-4) score, were assessed. Hepatic echography assessment was performed in 100 patients, and they were followed up for 10 years. TRL particle concentrations showed a strong positive association with Glyc-A and Glyc-B (ρ=0.895 and ρ=0.654, p<0.001, respectively) and with the liver function-related proteins ALT ρ=0.293, p<0.001), AST (ρ=0.318, p<0.001) and GGT (ρ=0.284, p<0.001). Likewise, TRL concentrations showed a positive association with FLI (ρ=0.425, p<0.001) but not with FIB-4. During the follow-up period of 10 years, 18 new cases of steatosis were observed among 64 patients who were disease-free at baseline. Baseline TRL particle numbers and glycoprotein levels were associated with the new development of metabolic-associated fatty liver disease (MAFLD) (AUC=0.692, p=0.018 and AUC=0.669, p=0.037, respectively). Overall, our results indicated that TRL number and acute-phase glycoproteins measured by 1H-NMR could be potential biomarkers of the development of hepatic steatosis in patients at metabolic risk.

2022 ◽  
Vol 8 ◽  
Yosuke Komatsu ◽  
Daiki Kumakura ◽  
Namiko Seto ◽  
Hirohisa Izumi ◽  
Yasuhiro Takeda ◽  

Background: The gut microbiome and fecal metabolites of breastfed infants changes during lactation, and are influenced by breast milk components. This study aimed to investigate dynamic associations of milk components with the infant gut microbiome and fecal metabolites throughout the lactation period in a mother–infant model.Methods: One month after delivery, breast milk and subsequent infant feces were collected in a pair for 5 months from a mother and an exclusively breastfed infant. Composition of the fecal microbiome was determined with 16S rRNA sequencing. Low-molecular-weight metabolites, including human milk oligosaccharides (HMOs), and antibacterial proteins were measured in feces and milk using 1H NMR metabolomics and enzyme-linked immunosorbent assays. The association of milk bioactive components with the infant gut microbiome and fecal metabolites was determined with Python clustering and correlation analyses.Results: The HMOs in milk did not fluctuate throughout the lactation period. However, they began to disappear in infant feces at the beginning of month 4. Notably, at this time-point, a bifidobacterium species switching (from B. breve to B. longum subsp. infantis) occurred, accompanied by fluctuations in several metabolites including acetate and butyrate in infant feces.Conclusions: Milk bioactive components, such as HMOs, might play different roles in the exclusively breastfed infants depending on the lactation period.

2022 ◽  
Vol 8 ◽  
Yun-Seo Kil ◽  
Ah-Reum Han ◽  
Min-Jeong Hong ◽  
Jin-Baek Kim ◽  
Pil-Hoon Park ◽  

Recently, wheat has attracted attention as a functional food, rather than a simple dietary energy source. Accordingly, whole-grain intake increases with an understanding of bioactive phytochemicals in bran. The development of colored wheat has drawn more attention to the value of bran owing to its nutritional quality, as well as the antioxidant properties of the colorant. The present 1H NMR-based chemometric study evaluated the compositional improvement of radiation-induced mutants in purple wheat by focusing on the predominant metabolites with high polarity. A total of 33 metabolites, including three choline derivatives, three sugar alcohols, four sugars, 13 amino acids, eight organic acids, and two nucleosides, were identified throughout the 1H NMR spectra, and quantification data were obtained for the identified metabolites via peak shape-based quantification. Principal component and hierarchical cluster analyses were conducted for performing multivariate analyses. The colored original wheat was found to exhibit improvements compared to yellow wheat in terms of the contents of primary metabolites, thus highlighting the importance of conducting investigations of polar metabolites. The chemometrics studies further revealed mutant lines with a compositional enhancement for metabolites, including lysine, proline, acetate, and glycerol.

Sign in / Sign up

Export Citation Format

Share Document