scholarly journals A New Entry in Catalytic Alkynylation of Aldehydes and Ketones: Dual Activation of Soft Nucleophiles and Hard Electrophiles by an Indium(III) Catalyst.

ChemInform ◽  
2005 ◽  
Vol 36 (32) ◽  
Author(s):  
Ryo Takita ◽  
Yuhei Fukuta ◽  
Riichiro Tsuji ◽  
Takashi Ohshima ◽  
Masakatsu Shibasaki
2005 ◽  
Vol 7 (7) ◽  
pp. 1363-1366 ◽  
Author(s):  
Ryo Takita ◽  
Yuhei Fukuta ◽  
Riichiro Tsuji ◽  
Takashi Ohshima ◽  
Masakatsu Shibasaki

2019 ◽  
Author(s):  
Leiyang Lv ◽  
Dianhu Zhu ◽  
Zihang Qiu ◽  
Jianbin Li ◽  
Chao-Jun Li

Hydroalkylation of unsaturated hydrocarbons with unstablized carbon nucleophiles is difficult and remains a major challenge. The disclosed examples so far mainly focused on the involvement of heteroatom and/or stabilized carbon nucleophiles as efficient reaction partners. Reported here is an unprecedented regioselective nickel-catalyzed hydroalkylation of 1,3-dienes with hydrazones, generated in situ from abundant aryl aldehydes and ketones and acted as both the sources of unstabilized carbanions and hydride. With this strategy, both terminal and sterically hindered internal dienes are hydroalkylated efficiently in a highly selective manner, thus providing a novel and reliable catalytic method to construct challenging C(sp3)-C(sp3) bonds.


2020 ◽  
Author(s):  
Eric Greve ◽  
Jacob D. Porter ◽  
Chris Dockendorff

Dual amine/pi Lewis acid catalyst systems have been reported for intramolecular direct additions of aldehydes/ketones to unactivated alkynes and occasionally alkenes, but related intermolecular reactions are rare and not presently of significant synthetic utility, likely due to undesired coordination of enamine intermediates to the metal catalyst. We reasoned that bulky metal ligands and bulky amine catalysts could minimize catalyst poisoning and could facilitate certain examples of direct intermolecular additions of aldehyde/ketones to alkenes/alkynes. Density Functional Theory (DFT) calculations were performed that suggested that PyBOX-Pt(II) catalysts for alkene/alkyne activation could be combined with MacMillan’s imidazolidinone organocatalyst for aldehyde/ketone activation to facilitate desirable C-C bond formations, and certain reactions were calculated to be more exergonic than catalyst poisoning pathways. As calculated, preformed enamines generated from the MacMillan imidazolidinone did not displace ethylene from a biscationic (<i>t</i>-Bu)PyBOX-Pt<sup>2+</sup>complex, but neither were the desired C-C bond formations observed under several different conditions.


2020 ◽  
Author(s):  
Eric Greve ◽  
Jacob D. Porter ◽  
Chris Dockendorff

Dual amine/pi Lewis acid catalyst systems have been reported for intramolecular direct additions of aldehydes/ketones to unactivated alkynes and occasionally alkenes, but related intermolecular reactions are rare and not presently of significant synthetic utility, likely due to undesired coordination of enamine intermediates to the metal catalyst. We reasoned that bulky metal ligands and bulky amine catalysts could minimize catalyst poisoning and could facilitate certain examples of direct intermolecular additions of aldehyde/ketones to alkenes/alkynes. Density Functional Theory (DFT) calculations were performed that suggested that PyBOX-Pt(II) catalysts for alkene/alkyne activation could be combined with MacMillan’s imidazolidinone organocatalyst for aldehyde/ketone activation to facilitate desirable C-C bond formations, and certain reactions were calculated to be more exergonic than catalyst poisoning pathways. As calculated, preformed enamines generated from the MacMillan imidazolidinone did not displace ethylene from a biscationic (<i>t</i>-Bu)PyBOX-Pt<sup>2+</sup>complex, but neither were the desired C-C bond formations observed under several different conditions.


Sign in / Sign up

Export Citation Format

Share Document