Subcortical projections of area MT in the macaque

1984 ◽  
Vol 223 (3) ◽  
pp. 368-386 ◽  
Author(s):  
Leslie G. Ungerleider ◽  
Robert Desimone ◽  
Thelma W. Galkin ◽  
Mortimer Mishkin
Keyword(s):  
2017 ◽  
Vol 118 (1) ◽  
pp. 203-218 ◽  
Author(s):  
Erin Goddard ◽  
Samuel G. Solomon ◽  
Thomas A. Carlson

The middle-temporal area (MT) of primate visual cortex is critical in the analysis of visual motion. Single-unit studies suggest that the response dynamics of neurons within area MT depend on stimulus features, but how these dynamics emerge at the population level, and how feature representations interact, is not clear. Here, we used multivariate classification analysis to study how stimulus features are represented in the spiking activity of populations of neurons in area MT of marmoset monkey. Using representational similarity analysis we distinguished the emerging representations of moving grating and dot field stimuli. We show that representations of stimulus orientation, spatial frequency, and speed are evident near the onset of the population response, while the representation of stimulus direction is slower to emerge and sustained throughout the stimulus-evoked response. We further found a spatiotemporal asymmetry in the emergence of direction representations. Representations for high spatial frequencies and low temporal frequencies are initially orientation dependent, while those for high temporal frequencies and low spatial frequencies are more sensitive to motion direction. Our analyses reveal a complex interplay of feature representations in area MT population response that may explain the stimulus-dependent dynamics of motion vision. NEW & NOTEWORTHY Simultaneous multielectrode recordings can measure population-level codes that previously were only inferred from single-electrode recordings. However, many multielectrode recordings are analyzed using univariate single-electrode analysis approaches, which fail to fully utilize the population-level information. Here, we overcome these limitations by applying multivariate pattern classification analysis and representational similarity analysis to large-scale recordings from middle-temporal area (MT) in marmoset monkeys. Our analyses reveal a dynamic interplay of feature representations in area MT population response.


2013 ◽  
Vol 14 (S1) ◽  
Author(s):  
Markus Helmer ◽  
Vladislav Kozyrev ◽  
Anja Lochte ◽  
Stefan Treue ◽  
Theo Geisel ◽  
...  

1987 ◽  
Vol 27 (12) ◽  
pp. 2035-2048 ◽  
Author(s):  
Hillary R. Rodman ◽  
Thomas D. Albright

Nature ◽  
10.1038/33688 ◽  
1998 ◽  
Vol 392 (6677) ◽  
pp. 714-717 ◽  
Author(s):  
David C. Bradley ◽  
Grace C. Chang ◽  
Richard A. Andersen

2005 ◽  
Vol 94 (6) ◽  
pp. 4156-4167 ◽  
Author(s):  
Daniel Zaksas ◽  
Tatiana Pasternak

Neurons in cortical area MT have localized receptive fields (RF) representing the contralateral hemifield and play an important role in processing visual motion. We recorded the activity of these neurons during a behavioral task in which two monkeys were required to discriminate and remember visual motion presented in the ipsilateral hemifield. During the task, the monkeys viewed two stimuli, sample and test, separated by a brief delay and reported whether they contained motion in the same or in opposite directions. Fifty to 70% of MT neurons were activated by the motion stimuli presented in the ipsilateral hemifield at locations far removed from their classical receptive fields. These responses were in the form of excitation or suppression and were delayed relative to conventional MT responses. Both excitatory and suppressive responses were direction selective, but the nature and the time course of their directionality differed from the conventional excitatory responses recorded with stimuli in the RF. Direction selectivity of the excitatory remote response was transient and early, whereas the suppressive response developed later and persisted after stimulus offset. The presence or absence of these unusual responses on error trials, as well as their magnitude, was affected by the behavioral significance of stimuli used in the task. We hypothesize that these responses represent top-down signals from brain region(s) accessing information about stimuli in the entire visual field and about the behavioral state of the animal. The recruitment of neurons in the opposite hemisphere during processing of behaviorally relevant visual signals reveals a mechanism by which sensory processing can be affected by cognitive task demands.


1984 ◽  
Vol 52 (3) ◽  
pp. 488-513 ◽  
Author(s):  
D. J. Felleman ◽  
J. H. Kaas

Response properties of single neurons in the middle temporal visual area (MT) of anesthetized owl monkeys were determined and quantified for flashed and moving bars of light under computer control for position, orientation, direction of movement, and speed. Receptive-field sizes, ranging from 4 to 25 degrees in width, were considerably larger than receptive fields with corresponding eccentricities in the striate cortex. Neurons were highly binocular with most cells equally or nearly equally activated by either eye. Neurons varied in selectivity for axis and direction of moving bars. Some neurons demonstrated little or no selectivity, others were bidirectional on a single axis, while the largest group was highly selective for direction with little or no response to bar movement opposite to the preferred direction. Over 70% of neurons were classified as highly selective and 90% showed some preference for direction and/or axis of stimulus movement. Neurons typically responded to bar movement only over a restricted range of velocities. The majority of neurons responded best to a particular velocity within the 5-60 degrees/s range, with marked attenuation of the response for velocities greater or less than the preferred. Some neurons failed to show significant response attenuation even at the lowest tested velocity, while other neurons preferred velocities of 100 degrees/s or more and failed to attenuate to the highest velocities. Response magnitude varied with stimulus dimensions. Increasing the length of the moving bar typically increased the magnitude of the response slightly until the stimulus exceeded the receptive-field borders. Other neurons responded less to increases in bar length within the excitatory receptive field. Neurons preferred narrow bars less than 1 degree in width, and marked reductions in responses characteristically occurred with wider stimuli. Moving patterns of randomly placed small dots were often as effective as or more effective than single bars in activating neurons. Selectivity for direction of movement remained for the dot pattern. for the dot pattern. Poststimulus time (PST) histograms of responses to bars flashed at a series of 21 different positions across the receptive field, in the "response-plane" format, indicated a spatially and temporally homogeneous receptive-field structure for nearly all neurons. Cells characteristically showed transient excitation at both stimulus onset and offset for all effective stimulus locations. Some cells responded mainly at bright stimulus onset or offset.


Sign in / Sign up

Export Citation Format

Share Document