stimulus offset
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 18)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 15 ◽  
Author(s):  
Sergio Vicencio-Jimenez ◽  
Giuliana Bucci-Mansilla ◽  
Macarena Bowen ◽  
Gonzalo Terreros ◽  
David Morales-Zepeda ◽  
...  

The ability to perceive the world is not merely a passive process but depends on sensorimotor loops and interactions that guide and actively bias our sensory systems. Understanding which and how cognitive processes participate in this active sensing is still an open question. In this context, the auditory system presents itself as an attractive model for this purpose as it features an efferent control network that projects from the cortex to subcortical nuclei and even to the sensory epithelium itself. This efferent system can regulate the cochlear amplifier sensitivity through medial olivocochlear (MOC) neurons located in the brainstem. The ability to suppress irrelevant sounds during selective attention to visual stimuli is one of the functions that have been attributed to this system. MOC neurons are also directly activated by sounds through a brainstem reflex circuit, a response linked to the ability to suppress auditory stimuli during visual attention. Human studies have suggested that MOC neurons are also recruited by other cognitive functions, such as working memory and predictability. The aim of this research was to explore whether cognitive processes related to delayed responses in a visual discrimination task were associated with MOC function. In this behavioral condition, chinchillas held their responses for more than 2.5 s after visual stimulus offset, with and without auditory distractors, and the accuracy of these responses was correlated with the magnitude of the MOC reflex. We found that the animals’ performance decreased in presence of auditory distractors and that the results observed in MOC reflex could predict this performance. The individual MOC strength correlated with behavioral performance during delayed responses with auditory distractors, but not without them. These results in chinchillas, suggest that MOC neurons are also recruited by other cognitive functions, such as working memory.


2021 ◽  
Vol 15 ◽  
Author(s):  
Bing-Xue Li ◽  
Hua Jin ◽  
Guang-Jian Zhang ◽  
Li-Na Cui ◽  
Chun-Ping Chu ◽  
...  

Noradrenaline is an important neuromodulator in the cerebellum. We previously found that noradrenaline depressed cerebellar Purkinje cell activity and climbing fiber–Purkinje cell synaptic transmission in vivo in mice. In this study, we investigated the effect of noradrenaline on the facial stimulation-evoked cerebellar cortical mossy fiber–granule cell synaptic transmission in urethane-anesthetized mice. In the presence of a γ-aminobutyrateA (GABAA) receptor antagonist, air-puff stimulation of the ipsilateral whisker pad evoked mossy fiber–granule cell synaptic transmission in the cerebellar granular layer, which expressed stimulus onset response, N1 and stimulus offset response, N2. Cerebellar surface perfusion of 25 μM noradrenaline induced decreases in the amplitude and area under the curve of N1 and N2, accompanied by an increase in the N2/N1 ratio. In the presence of a GABAA receptor blocker, noradrenaline induced a concentration-dependent decrease in the amplitude of N1, with a half-maximal inhibitory concentration of 25.45 μM. The noradrenaline-induced depression of the facial stimulation-evoked mossy fiber–granule cell synaptic transmission was reversed by additional application of an alpha-adrenergic receptor antagonist or an alpha-2 adrenergic receptor antagonist, but not by a beta-adrenergic receptor antagonist or an alpha-1 adrenergic receptor antagonist. Moreover, application of an alpha-2 adrenergic receptor agonist, UK14304, significantly decreased the synaptic response and prevented the noradrenaline-induced depression. Our results indicate that noradrenaline depresses facial stimulation-evoked mossy fiber–granule cell synaptic transmission via the alpha-2 adrenergic receptor in vivo in mice, suggesting that noradrenaline regulates sensory information integration and synaptic transmission in the cerebellar cortical granular layer.


2021 ◽  
Author(s):  
Carolyn Amir ◽  
Margaret Rose-McCandlish ◽  
Rachel Weger ◽  
Troy C. Dildine ◽  
Dominik - Mischkowski ◽  
...  

Quantitative sensory testing (QST) allows researchers to evaluate associations between noxious stimuli and acute pain in clinical populations and healthy participants. Despite its widespread use, our understanding of QST’s reliability is limited, as reliability studies have used small samples and restricted time windows. We examined the reliability of pain ratings in response to noxious thermal stimulation in 171 healthy volunteers (n = 99 female, n = 72 male) who completed QST on multiple visits ranging from 1 day to 952 days between visits. On each visit, participants underwent an adaptive pain calibration in which they experienced 24 heat trials and rated pain intensity after stimulus offset on a 0-10 Visual Analog Scale. We used linear regression to determine pain threshold, pain tolerance, and the correlation between temperature and pain for each session and examined the reliability of these measures. Threshold and tolerance were moderately reliable (Intra-class correlation [ICC]=0.66 and 0.67, respectively; p<.001), whereas temperature-pain correlations had low reliability (ICC=0.23). In addition, pain tolerance was significantly more reliable in female participants than male participants, and we observed similar trends for other pain sensitive measures. Our findings indicate that threshold and tolerance are largely consistent across visits, whereas sensitivity to changes in temperature vary over time and may be influenced by contextual factors.


2021 ◽  
Author(s):  
Mónica Otero ◽  
Caroline Lea-Carnall ◽  
Pavel Prado ◽  
María-José Escobar ◽  
Wael El-Deredy

AbstractThe entrainment (synchronization) of brain oscillations to the frequency of sensory stimuli is a key mechanism that shapes perceptual and cognitive processes, such that atypical neural entrainment leads to neuro-psychological deficits.ObjectiveWe investigated the dynamic of neural entrainment. Particular attention was paid to the oscillatory behavior that succeed the end of the stimulation, since the persistence (reverberation) of neural entrainment may condition future sensory representations based on predictions about stimulus rhythmicity.ApproachA modified Jansen-Rit neural mass model of coupled cortical columns generated a time series whose frequency spectrum resembled that of the electroencephalogram. We evaluated spectro-temporal features of entrainment, during and after rhythmic stimulation of different frequencies, as a function of the resonance frequency of the neural population and the coupling strength between cortical columns. We tested if the duration of the entrainment persistence depended on the state of the neural network at the time the stimulus ends.Main ResultsThe entrainment of the column that received the stimulation was maximum when the frequency of the entrainer was within a narrow range around the resonance frequency of the column. When this occurred, entrainment persisted for several cycles after the stimulus terminated, and the propagation of the entrainment to other columns was facilitated. Propagation depended on the resonance frequency of the second column, and the coupling strength between columns. The duration of the persistence of the entrainment depended on the phase of the neural oscillation at the time the entrainer terminated, such that falling phases (from π/2 to 3π/2 in a sine function) led to longer persistence than rising phases (from 0 to π/2 and 3π/2 to 2π).SignificanceThe study bridges between models of neural oscillations and empirical electrophysiology, and provides insights to the use of rhythmic sensory stimulation for neuroenhancement.


2021 ◽  
pp. 1-17
Author(s):  
Grant T. Fairchild ◽  
Francesco Marini ◽  
Jacqueline C. Snow

Abstract The cognitive and neural bases of visual perception are typically studied using pictures rather than real-world stimuli. Unlike pictures, real objects are actionable solids that can be manipulated with the hands. Recent evidence from human brain imaging suggests that neural responses to real objects differ from responses to pictures; however, little is known about the neural mechanisms that drive these differences. Here, we tested whether brain responses to real objects versus pictures are differentially modulated by the “in-the-moment” graspability of the stimulus. In human dorsal cortex, electroencephalography responses show a “real object advantage” in the strength and duration of mu (μ) and low beta (β) rhythm desynchronization—well-known neural signatures of visuomotor action planning. We compared desynchronization for real tools versus closely matched pictures of the same objects, when the stimuli were positioned unoccluded versus behind a large transparent barrier that prevented immediate access to the stimuli. We found that, without the barrier in place, real objects elicited stronger μ and β desynchronization compared to pictures, both during stimulus presentation and after stimulus offset, replicating previous findings. Critically, however, with the barrier in place, this real object advantage was attenuated during the period of stimulus presentation, whereas the amplification in later periods remained. These results suggest that the “real object advantage” is driven initially by immediate actionability, whereas later differences perhaps reflect other, more inherent properties of real objects. The findings showcase how the use of richer multidimensional stimuli can provide a more complete and ecologically valid understanding of object vision.


2021 ◽  
Author(s):  
Jintao Gu ◽  
Sukbin Lim

Working memory is a core component of critical cognitive functions such as planning and decision-making. Persistent activity that lasts long after the stimulus offset has been considered a neural substrate for working memory. Attractor dynamics based on network interactions can successfully reproduce such persistent activity. However, it suffers from a fine-tuning of network connectivity, in particular, to form continuous attractors suggested for working memory encoding analog signals. Here, we investigate whether a specific form of synaptic plasticity rules can mitigate such tuning problems in two representative working memory models, namely, rate-coded and location-coded persistent activity. We consider two prominent types of plasticity rules, differential plasticity targeting the slip of instant neural activity and homeostatic plasticity regularizing the long-term average of activity, both of which have been proposed to fine-tune the weights in an unsupervised manner. Consistent with the findings of previous works, differential plasticity alone was enough to recover a graded-level persistent activity with less sensitivity to learning parameters. However, for the maintenance of spatially structured persistent activity, differential plasticity could recover persistent activity, but its pattern can be irregular for different stimulus locations. On the other hand, homeostatic plasticity shows a robust recovery of smooth spatial patterns under particular types of synaptic perturbations, such as perturbations in incoming synapses onto the entire or local populations, while it was not effective against perturbations in outgoing synapses from local populations. Instead, combining it with differential plasticity recovers location-coded persistent activity for a broader range of perturbations, suggesting compensation between two plasticity rules.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Cassandra L Hays ◽  
Asia L Sladek ◽  
Greg D Field ◽  
Wallace B Thoreson

Vision under starlight requires rod photoreceptors transduce and transmit single photon responses to the visual system. Small single photon voltage changes must therefore cause detectable reductions in glutamate release. We found that rods achieve this by employing mechanisms that enhance release regularity and its sensitivity to small voltage changes. At the resting membrane potential in darkness, mouse rods exhibit coordinated and regularly timed multivesicular release events, each consisting of ~17 vesicles and occurring 2-3 times more regularly than predicted by Poisson statistics. Hyperpolarizing rods to mimic the voltage change produced by a single photon abruptly reduced the probability of multivesicular release nearly to zero with a rebound increase at stimulus offset. Simulations of these release dynamics indicate that this regularly timed, multivesicular release promotes transmission of single photon responses to post-synaptic rod bipolar cells. Furthermore, the mechanism is efficient, requiring lower overall release rates than uniquantal release governed by Poisson statistics.


2021 ◽  
Author(s):  
Daniel J. Sheehan ◽  
Stephen Charczynski ◽  
Blake A. Fordyce ◽  
Michael E. Hasselmo ◽  
Marc W. Howard

AbstractPrincipal cells in the rodent hippocampus often fire in response to traversal through a specific spatial location (place cells), as well as elapsed time during an imposed temporal delay or after stimulus offset (time cells). Sequences of time cells unfold rapidly at first, with many time cells with narrow time fields. As the triggering event recedes into the past, time cells are fewer and have broader fields. This means that the representation of time in the hippocampus is compressed with greater resolution for time points near the present. Using tetrode recordings we measured individual CA1 units while rats traveled along a track that could be changed in length. Consistent with previous results, most place cells coded for distance from the starting point of the trajectory. Critically, place cells became less numerous and showed gradually widening fields with distance from the starting location. These results suggest that as the animal leaves a landmark, the hippocampal place code forms a compressed representation of distance from the starting location. The representation of time and space in the hippocampus have similar properties suggesting that they arise from similar computational mechanisms.Significance StatementThe hippocampus represents relationships between events in time and space. It has been hypothesized that temporal and spatial relationships are the result of a common computational mechanism. Previous work has shown that the representation of time in the hippocampus is compressed, with less neural resolution for more temporally remote events, consistent with the observation that temporal memory is worse for events further in the past. This paper shows an analogous result for spatial relationships. Place cells coded for distance from the start of a journey. As distance increased, place fields became broader and less numerous, showing a decrease in spatial resolution. This result suggests a unified coding scheme for the dimensions of time and space in the rodent hippocampus.


Author(s):  
CL Hays ◽  
AL Sladek ◽  
GD Field ◽  
WB Thoreson

AbstractVision under starlight requires rod photoreceptors to transduce and transmit single photon responses to the visual system. This remarkable sensitivity depends on a small voltage change reliably reducing glutamate release such that post-synaptic rod bipolar cells can robustly detect the signal. To transmit this small signal, we have found that rod vesicle release deviates strongly from a Poisson process under conditions that mimic darkness. Specifically, at their resting membrane potential in darkness, rods exhibit coordinated and regularly timed multivesicular release events. Each release event consisted of ∼17 vesicles and occurred 2-3 times more regularly than expected from a Poisson process. Hyperpolarizing rods to mimic the voltage change produced by a single photon response abruptly reduced the probability of multivesicular release nearly to zero with a rebound increase in release probability at stimulus offset. Simulations of these release dynamics indicate that this regularly timed, multivesicular release promotes transmission of single photon responses to post-synaptic neurons. Furthermore, the mechanism is efficient, requiring fewer vesicles to be released per second than uniquantal release governed by Poisson statistics.


2020 ◽  
Vol 8 (3-4) ◽  
pp. 254-278
Author(s):  
Lisa V. Eberhardt ◽  
Ferdinand Pittino ◽  
Anna Scheins ◽  
Anke Huckauf ◽  
Markus Kiefer ◽  
...  

Abstract Emotional stimuli like emotional faces have been frequently shown to be temporally overestimated compared to neutral ones. This effect has been commonly explained by induced arousal caused by emotional processing leading to the acceleration of an inner-clock-like pacemaker. However, there are some studies reporting contradictory effects and others point to relevant moderating variables. Given this controversy, we aimed at investigating the processes underlying the temporal overestimation of emotional faces by combining behavioral and electrophysiological correlates in a temporal bisection task. We assessed duration estimation of angry and neutral faces using anchor durations of 400 ms and 1600 ms while recording event-related potentials. Subjective ratings and the early posterior negativity confirmed encoding and processing of stimuli’s emotionality. However, temporal ratings did not differ between angry and neutral faces. In line with this behavioral result, the Contingent Negative Variation (CNV), an electrophysiological index of temporal accumulation, was not modulated by the faces’ emotionality. Duration estimates, i.e., short or long responses toward stimuli of ambiguous durations of 1000 ms, were nevertheless associated with a differential CNV amplitude. Interestingly, CNV modulation was already observed at 600–700 ms after stimulus onset, i.e., long before stimulus offset. The results are discussed in light of the information-processing model of time perception as well as regarding possible factors of the experimental setup moderating temporal overestimation of emotional stimuli. In sum, combining behavioral and electrophysiological measures seems promising to more clearly understand the complex processes leading to the illusion of temporal lengthening of emotional faces.


Sign in / Sign up

Export Citation Format

Share Document