Coding of visual stimulus velocity in area MT of the macaque

1987 ◽  
Vol 27 (12) ◽  
pp. 2035-2048 ◽  
Author(s):  
Hillary R. Rodman ◽  
Thomas D. Albright
1997 ◽  
Vol 77 (3) ◽  
pp. 1099-1118 ◽  
Author(s):  
Eric Marsh ◽  
Robert Baker

Marsh, Eric and Robert Baker. Normal and adapted visuooculomotor reflexes in goldfish. J. Neurophysiol. 77: 1099–1118. Under normal physiological conditions, whole field visual motion generally occurs in response to either active or passive self-motion. In the laboratory, selective movement of the visual surround produces an optokinetic response (OKR) that acts primarily to support the vestibuloocular reflex (VOR). During visual world motion, however, the OKR can be viewed as operating independently over frequency and amplitude ranges insufficient for vestibular activation. The goal of the present study was to characterize this isolated behavior of the OKR in goldfish as an essential step for studying central neuronal correlates of visual-vestibular interactions and the mechanisms underlying oculomotor adaptation. After presentation of either binocular sinusoidal or step visual stimuli, conjugate eye movements were elicited with an amplitude and phase profile similar to that of other vertebrates. An early and a delayed component were measured with different dynamics that could be altered independently by visual training. The ensuing visuomotor plasticity was robust and exhibited five major characteristics. First, the gain of both early and delayed components of the OKR increased >100%. Second, eye velocity decreased 0.5–2.0 s before the change in direction of stimulus velocity. Third, on lengthening the duration of a constant velocity visual stimulus (e.g., from 8 to 16 s), eye velocity decreased toward 0°/s. This behavior was correlated with the direction and period as opposed to the frequency of the visual stimulus (“period tuning”). Fourth, visual stimulus training increased VOR eye velocity with a ratio of 0.6 to 1 to that measured for the OKR. Fifth, after OKR adaptation, eye velocity consistently oscillated in a conjugate, symmetrical fashion at 2.4 Hz in the light, whereas in the dark, a rhythmical low-amplitude eye velocity occurred at the visual training frequency. We conclude that the frequency and amplitude of visual stimuli for eliciting the goldfish OKR are well suited for complementing the VOR. Unlike most mammals, OKR adaptive modifications significantly alter VOR gain, whereas the effects of VOR training are much less on OKR gain. These observations suggest that both distributed circuits and discrete neuronal populations control visuo- and vestibulomotor performance. Finally, the existence of a rhythmic, “period tuned” visuomotor behavior provides a unique opportunity to examine the neuronal mechanisms of adaptive plasticity.


1966 ◽  
Author(s):  
DONALD N. FARRER ◽  
JIM MILNER
Keyword(s):  

2012 ◽  
Author(s):  
Joshua Haworth ◽  
Nathaniel Hunt ◽  
Yawen Yu ◽  
Nicholas Stergiou

1976 ◽  
Author(s):  
P. C. Dodwell ◽  
B. N. Timney ◽  
V. F. Emerson
Keyword(s):  

2018 ◽  
pp. 186-199

Background Coincidence-anticipation timing (CAT) responses require individuals to determine the time at which an approaching object will arrive at (time to collision) or pass by (time to passage) the observer and to then make a response coincident with this time. Previous studies suggest that under some conditions time to collision estimates are more accurate when binocular and monocular cues are combined. The purpose of this study was to compare binocular and monocular coincidence anticipation timing responses with the Bassin Anticipation Timer, a device for testing and training CAT responses. Methods: Useable data were obtained from 20 participants. Coincidence-anticipation timing responses were determined using a Bassin Anticipation Timer over a range of approaching stimulus linear velocities of 5 to 40mph. Participants stood to the left side of the Bassin Anticipation track. The track was below eye height. The participants’ task was to push a button to coincide with arrival of the approaching stimulus at a location immediately adjacent to the participant. CAT responses were made under three randomized conditions: binocular viewing, monocular dominant eye viewing, and monocular non-dominant eye viewing. Results: Signed (constant), unsigned (absolute), and variable (standard deviation) CAT response errors were determined and compared across viewing conditions at each stimulus velocity. There were no significant differences in CAT errors between the conditions at any stimulus velocity, although the differences in signed and unsigned errors approached significance at 40mph. Conclusions: The addition of binocular cues did not result in a reduction in coincidence anticipation timing response errors compared to the monocular viewing conditions. There were no differences in CAT response errors between the monocular dominant eye viewing and monocular non-dominant eye viewing conditions.


Sign in / Sign up

Export Citation Format

Share Document