Global exponential stability for uncertain bidirectional associative memory neural networks with multiple time-varying delaysvia LMI approach

2008 ◽  
Vol 36 (4) ◽  
pp. 451-471 ◽  
Author(s):  
Ruey-Shyan Gau ◽  
Jer-Guang Hsieh ◽  
Chang-Hua Lien
2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
J. Thipcha ◽  
P. Niamsup

The global exponential stability for bidirectional associative memory neural networks with time-varying delays is studied. In our study, the lower and upper bounds of the activation functions are allowed to be either positive, negative, or zero. By constructing new and improved Lyapunov-Krasovskii functional and introducing free-weighting matrices, a new and improved delay-dependent exponential stability for BAM neural networks with time-varying delays is derived in the form of linear matrix inequality (LMI). Numerical examples are given to demonstrate that the derived condition is less conservative than some existing results given in the literature.


Sign in / Sign up

Export Citation Format

Share Document