On exponential stability of bidirectional associative memory neural networks with time-varying delays

2009 ◽  
Vol 39 (3) ◽  
pp. 1083-1091 ◽  
Author(s):  
Ju H. Park ◽  
S.M. Lee ◽  
O.M. Kwon
Author(s):  
Xiangying Fu ◽  
Fanchao Kong

AbstractThis paper is concerned with a class of bidirectional associative memory (BAM) neural networks with discontinuous activations and time-varying delays. Under the basic framework of differential inclusions theory, the existence result of solutions in sense of Filippov solution is firstly established by using the fundamental solution matrix of coefficients and inequality analysis technique. Also, the boundness of the solutions can be estimated. Secondly, based on the non-smooth Lyapunov-like approach and by construsting suitable Lyapunov–Krasovskii functionals, some new sufficient criteria are given to ascertain the globally exponential stability of the anti-periodic solutions for the proposed neural network system. Furthermore, we have collated our effort with some previous existing ones in the literatures and showed that it can take more advantages. Finally, two examples with numerical simulations are exploited to illustrate the correctness.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
J. Thipcha ◽  
P. Niamsup

The global exponential stability for bidirectional associative memory neural networks with time-varying delays is studied. In our study, the lower and upper bounds of the activation functions are allowed to be either positive, negative, or zero. By constructing new and improved Lyapunov-Krasovskii functional and introducing free-weighting matrices, a new and improved delay-dependent exponential stability for BAM neural networks with time-varying delays is derived in the form of linear matrix inequality (LMI). Numerical examples are given to demonstrate that the derived condition is less conservative than some existing results given in the literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Wei Feng ◽  
Simon X. Yang ◽  
Haixia Wu

The global asymptotic robust stability of equilibrium is considered for neutral-type hybrid bidirectional associative memory neural networks with time-varying delays and parameters uncertainties. The results we obtained in this paper are delay-derivative-dependent and establish various relationships between the network parameters only. Therefore, the results of this paper are applicable to a larger class of neural networks and can be easily verified when compared with the previously reported literature results. Two numerical examples are illustrated to verify our results.


Sign in / Sign up

Export Citation Format

Share Document