scholarly journals Nucleotide sequence variations in the internal ribosome entry site of hepatitis C virus-1b: No association with efficacy of interferon therapy or serum HCV-RNA levels

Hepatology ◽  
1997 ◽  
Vol 26 (6) ◽  
pp. 1616-1620 ◽  
Author(s):  
C Yamamoto ◽  
N Enomoto ◽  
M Kurosaki ◽  
S Yu ◽  
J Tazawa ◽  
...  
2009 ◽  
Vol 90 (7) ◽  
pp. 1659-1669 ◽  
Author(s):  
Cristina Romero-López ◽  
Raquel Díaz-González ◽  
Alicia Barroso-delJesus ◽  
Alfredo Berzal-Herranz

Hepatitis C virus (HCV) protein synthesis is mediated by a highly conserved internal ribosome entry site (IRES), mostly located at the 5′ untranslatable region (UTR) of the viral genome. The translation mechanism is different from that used by cellular cap-mRNAs, making IRESs an attractive target site for new antiviral drugs. The present work characterizes a chimeric RNA molecule (HH363-50) composed of two inhibitors: a hammerhead ribozyme targeting position 363 of the HCV genome and an aptamer directed towards the essential stem–loop structure in domain IV of the IRES region (which contains the translation start codon). The inhibitor RNA interferes with the formation of a translationally active complex, stalling its progression at the level of 80S particle formation. This action is likely related to the effective and specific blocking of HCV IRES-dependent translation achieved in Huh-7 cells. The inhibitor HH363-50 also reduces HCV RNA levels in a subgenomic replicon system. The present findings suggest that HH363-50 could be an effective anti-HCV compound and highlight the possibilities of antiviral agents based on RNA molecules.


2004 ◽  
Vol 78 (21) ◽  
pp. 12075-12081 ◽  
Author(s):  
Dongsheng Li ◽  
William B. Lott ◽  
John Martyn ◽  
Gholamreza Haqshenas ◽  
Eric J. Gowans

ABSTRACT To investigate the role of the hepatitis C virus internal ribosome entry site (HCV IRES) domain IV in translation initiation and regulation, two chimeric IRES elements were constructed to contain the reciprocal domain IV in the otherwise HCV and classical swine fever virus IRES elements. This permitted an examination of the role of domain IV in the control of HCV translation. A specific inhibitor of the HCV IRES, vitamin B12, was shown to inhibit translation directed by all IRES elements which contained domain IV from the HCV and the GB virus B IRES elements, whereas the HCV core protein could only suppress translation from the wild-type HCV IRES. Thus, the mechanisms of translation inhibition by vitamin B12 and the core protein differ, and they target different regions of the IRES.


2004 ◽  
Vol 24 (15) ◽  
pp. 6861-6870 ◽  
Author(s):  
Mauro Costa-Mattioli ◽  
Yuri Svitkin ◽  
Nahum Sonenberg

ABSTRACT Translation of poliovirus and hepatitis C virus (HCV) RNAs is initiated by recruitment of 40S ribosomes to an internal ribosome entry site (IRES) in the mRNA 5′ untranslated region. Translation initiation of these RNAs is stimulated by noncanonical initiation factors called IRES trans-activating factors (ITAFs). The La autoantigen is such an ITAF, but functional evidence for the role of La in poliovirus and HCV translation in vivo is lacking. Here, by two methods using small interfering RNA and a dominant-negative mutant of La, we demonstrate that depletion of La causes a dramatic reduction in poliovirus IRES function in vivo. We also show that 40S ribosomal subunit binding to HCV and poliovirus IRESs in vitro is inhibited by a dominant-negative form of La. These results provide strong evidence for a function of the La autoantigen in IRES-dependent translation and define the step of translation which is stimulated by La.


2000 ◽  
Vol 74 (15) ◽  
pp. 7024-7031 ◽  
Author(s):  
Hervé Lerat ◽  
Yoko K. Shimizu ◽  
Stanley M. Lemon

ABSTRACT Low-level replication of hepatitis C virus (HCV) in cultured lymphoblastoid cells inoculated with H77 serum inoculum led to the appearance of new virus variants containing identical substitutions at three sites within the viral 5′ nontranslated RNA (5′NTR): G107→A, C204→A, and G243→A (N. Nakajima, M. Hijikata, H. Yoshikura, and Y. K. Shimizu, J. Virol. 70:3325–3329, 1996). These results suggest that virus with this 5′NTR sequence may have a greater capacity for replication in such cells, possibly due to more efficient cap-independent translation, since these nucleotide substitutions reside within the viral internal ribosome entry site (IRES). To test this hypothesis, we examined the translation of dicistronic RNAs containing upstream and downstream reporter sequences (Renilla and firefly luciferases, respectively) separated by IRES sequences containing different combinations of these substitutions. The activity of the IRES was assessed by determining the relative firefly and Renillaluciferase activities expressed in transfected cells. Compared with the IRES present in the dominant H77 quasispecies, an IRES containing all three nucleotide substitutions had significantly greater translational activity in three of five human lymphoblastoid cell lines (Raji, Bjab, and Molt4 but not Jurkat or HPBMa10-2 cells). In contrast, these substitutions did not enhance IRES activity in cell lines derived from monocytes or granulocytes (HL-60, KG-1, or THP-1) or hepatocytes (Huh-7) or in cell-free translation assays carried out with rabbit reticulocyte lysates. Each of the three substitutions was required for maximally increased translational activity in the lymphoblastoid cells. The 2- to 2.5-fold increase in translation observed with the modified IRES sequence may facilitate the replication of HCV, possibly accounting for differences in quasispecies variants recovered from liver tissue and peripheral blood mononuclear cells of the same patient.


1999 ◽  
Vol 292 (3) ◽  
pp. 513-529 ◽  
Author(s):  
Jeffrey S. Kieft ◽  
Kaihong Zhou ◽  
Ronald Jubin ◽  
Michael G. Murray ◽  
Johnson Y.N. Lau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document