nucleotide sequence
Recently Published Documents


TOTAL DOCUMENTS

10480
(FIVE YEARS 230)

H-INDEX

181
(FIVE YEARS 5)

2023 ◽  
Vol 83 ◽  
Author(s):  
B. M. Khan ◽  
M. Sabir ◽  
M. N. Alyemeni ◽  
P. Kaushik ◽  
M. Saeed ◽  
...  

Abstract This study aimed to identify the phylogenetic similarities among the muntjac (Muntiacus spp.). The phylogenetic similarities among seven major muntjac species were studied by comparing the nucleotide sequence of 16s rRNA and cytochrome b genome. Nucleotide sequences, retrieved from NCBI databases were aligned by using DNASTAR software. A phylogenetic tree was created for the selected species of muntjac by using the maximum likelihood method on MEGA7 software. The results of nucleotide sequences (16s rRNA) showed phylogenetic similarities between, the M. truongsonensis and M. rooseveltorum had the highest (99.2%) while the lowest similarities (96.8%) found between M. crinifrons and M. putaoensi. While the results of nucleotide sequences (Cty b) showed the highest similarity (100%) between M. muntjak and M. truongsonensis and the lowest s (91.5%) among M. putaoensis and M. crinifrons. The phylogenetic tree of muntjac species (16s rRNA gene) shows the main two clusters, the one including M. putaoensis, M. truongsonensis, M. rooseveltorum, and M. muntjak, and the second one including M. crinifrons and M. vuquangensis. The M. reevesi exists separately in the phylogenetic tree. The phylogenetic tree of muntjac species using cytochrome b genes shows that the M. muntjak and M. truongsonensis are clustered in the same group.


2022 ◽  
Author(s):  
Toshihisa Ohshima ◽  
Taketo Ohmori ◽  
Masaki Tanaka

Abstract L-Arginine dehydrogenase (L-ArgDH, EC 1.4.1.25) is an amino acid dehydrogenase which catalyzes the reversible oxidative deamination of L-arginine to the oxo analog in the presence of NADP. Although the enzyme activity is detected in the cell extract of Pseudomonas aruginosa , the purification and characterization of the enzyme have not been achieved to date. We here found the gene homolog of L-ArgDH in genome data of Pseudomonas veronii and succeeded in expression of P. veronii JCM11942 gene in E. coli. The gene product exhibited strong NADP-dependent L-ArgDH activity. The crude enzyme was unstable under neutral pH conditions, but was markedly stabilized by the addition of 10% glycerol. The enzyme was purified to homogeneity through a single Ni-chelate affinity ch romatography step and consisted of a homodimeric protein with a molecular mass of about 65 kDa. The enzyme selectively catalyzed l-arginine oxidation in the presence of NADP with maximal activity at pH 9.5. The apparent K m values for l-arginine and NADP were 2.5 and 0.21 mM, respectively. The nucleotide sequence coding the enzyme gene ( was determined and the amino acid sequence was deduced from the nucleotide sequence. As an application of the enzyme, simple colorimetric microassay for L-arginine using the enzyme was achieved.


2022 ◽  
Vol 5 (4) ◽  
pp. e202101203
Author(s):  
Yasunori Park ◽  
Rachael A West ◽  
Pranujan Pathmendra ◽  
Bertrand Favier ◽  
Thomas Stoeger ◽  
...  

Nucleotide sequence reagents underpin molecular techniques that have been applied across hundreds of thousands of publications. We have previously reported wrongly identified nucleotide sequence reagents in human research publications and described a semi-automated screening tool Seek & Blastn to fact-check their claimed status. We applied Seek & Blastn to screen >11,700 publications across five literature corpora, including all original publications in Gene from 2007 to 2018 and all original open-access publications in Oncology Reports from 2014 to 2018. After manually checking Seek & Blastn outputs for >3,400 human research articles, we identified 712 articles across 78 journals that described at least one wrongly identified nucleotide sequence. Verifying the claimed identities of >13,700 sequences highlighted 1,535 wrongly identified sequences, most of which were claimed targeting reagents for the analysis of 365 human protein-coding genes and 120 non-coding RNAs. The 712 problematic articles have received >17,000 citations, including citations by human clinical trials. Given our estimate that approximately one-quarter of problematic articles may misinform the future development of human therapies, urgent measures are required to address unreliable gene research articles.


2022 ◽  
Author(s):  
Napakhwan Imklin ◽  
Pattaraporn Sripras ◽  
Narut Thanantong ◽  
Porntippa Lekcharoensuk ◽  
Rujikan Nasanit

Abstract The novel Escherichia phage vB_EcoM-RPN242 was isolated using a strain of Escherichia coli host originated from a diarrheal piglet. The phage was able to form plaques on the E. coli lawn at 15−45ºC. Moreover, it was stable over a wide pH (4−10) and temperature (4−70ºC) range. The vB_EcoM-RPN242 genome was found to be a linear, double-stranded DNA consisting of 154,840 base pairs. There were 195 protein-encoding genes and 2 tRNAs detected in the genome, however no unfavorable gene was found. According to the overall nucleotide sequence comparison, the vB_EcoM-RPN242 possibly represents a new phage species in the genus Agtrevirus.


2021 ◽  
Vol 78 (6) ◽  
pp. 373-380
Author(s):  
Oleh Prylutskyi ◽  
◽  
Oleksandr Zinenko ◽  
Polina Havrysh ◽  
◽  
...  

New records of four species of the genus Lepiota (Agaricales, Basidiomycota) are reported from Ukraine. Three species, L. fuscovinacea, L. griseovirens, and L. roseolivida, are recorded in Ukraine for the first time, whereas a poorly known species, L. subalba, earlier known in Ukraine from a few records, is confirmed using molecular identification methods. All species reports are supplemented with original descriptions and drawings based on newly collected material, as well as data on general distribution, habitat, references to new collections and public databases. Original nucleotide sequence of the ITS region of ribosomal DNA obtained from our voucher specimen of L. subalba is provided.


2021 ◽  
Vol 14 (4) ◽  
pp. 52-59
Author(s):  
L. A. Katargina ◽  
V. V. Kadyshev ◽  
E. V. Denisova ◽  
E. A. Geraskina ◽  
A. V. Marakhonov ◽  
...  

Familial exudative vitreoretinopathy (FEVR)is a rare genetically heterogeneous disease with multiple types of inheritance (autosomal dominant, autosomal recessive, X-linked) and widely varying clinical features. Up to 40 % of cases of FEVR are associated with mutations of the FZD4 gene.Purpose: to investigate the clinical manifestations of FEVR in children with nucleotide sequence alterations in the FZD4 gene. Material and methods. The Helmholtz National Medical ResearchCenter of Eye Diseases and the ResearchCentre for MedicalGenetics conducted a joint in-depth ophthalmological examination of 18 patients aged from 3 weeks to 17 years with a diagnosis of FEVR, which included a detailed ophthalmoscopy under drug mydriasis, ultrasound and electrophysiological examination, photographic recording of fundus changes using RetCam and Fundus Foto. Molecular genetic examination was carried out by direct sequencing according to Sanger. Results. Nucleotide sequence alterations in the FZD4 gene were detected in 3 patients(16.7 %)from two unrelated families. In one family, a 12-year-old girl wasfound to display the firstsymptoms of ophthalmic pathology (reduced vision, strabismus) at the age of 3.5 years. In another family, the clinical manifestations of FZD4 gene mutations were observed in two children during the first year of life (at the age of 5 and 11 months).Conclusions. The clinical picture of 3 patients with detected changes in the nucleotide sequence of the FZD4 gene is characterized by early manifestation and bilateral asymmetric ophthalmoscopic damage. The results of the study indicate the need for a timely diagnosis of FEVR in young children, recommend an interdisciplinary approach to the study of the disease, which should contribute to a better understanding of pathogenesis, and the development of an effective diagnostic, treatment and rehabilitation algorithm.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 79
Author(s):  
Sitong Liu ◽  
Xinfeng Wang ◽  
Ning Ding ◽  
Yutong Liu ◽  
Ning Li ◽  
...  

Plants have the salient biological property of totipotency, i.e., the capacity to regenerate a whole plant from virtually any kind of fully differentiated somatic cells after a process of dedifferentiation. This property has been well-documented by successful plant regeneration from tissue cultures of diverse plant species. However, the accumulation of somaclonal variation, especially karyotype alteration, during the tissue culture process compromises cell totipotency. In this respect, Chinese ginseng (Panax ginseng C. A. Mey.) is an exception in that it shows little decline in cell totipotency accompanied by remarkable chromosomal stability even after prolonged tissue cultures. However, it remains unclear whether chromosomal level stability necessarily couples with molecular genetic stability at the nucleotide sequence level, given that the two types of stabilities are generated by largely distinct mechanisms. Here, we addressed this issue by genome-wide comparisons at the single-base resolution of long-term tissue culture-regenerated P. ginseng plants. We identified abundant single nucleotide polymorphisms (SNPs) that have accumulated in cultured ginseng callus and are retained in the process of plant regeneration. These SNPs did not occur at random but showed differences among chromosomes and biased regional aggregation along a given chromosome. In addition, our results demonstrate that, compared with the overall genes, genes related to processes of cell totipotency and chromosomal stability possess lower mutation rates at both coding and flanking regions. In addition, collectively, the mutated genes exhibited higher expression levels than non-mutated genes and are significantly enriched in fundamental biological processes, including cellular component organization, development, and reproduction. These attributes suggest that the precipitated molecular level genetic variations during the process of regeneration in P. ginseng are likely under selection to fortify normal development. As such, they likely did not undermine chromosomal stability and totipotency of the long-term ginseng cultures.


Author(s):  
Tine Tesovnik ◽  
Barbara Jenko Bizjan ◽  
Robert Šket ◽  
Maruša Debeljak ◽  
Tadej Battelino ◽  
...  

Together with metabolites, proteins, and lipid components, the EV cargo consists of DNA and RNA nucleotide sequence species, which are part of the intracellular communication network regulating specific cellular processes and provoking distinct target cell responses. The extracellular vesicle (EV) nucleotide sequence cargo molecules are often investigated in association with a particular pathology and may provide an insight into the physiological and pathological processes in hard-to-access organs and tissues. The diversity and biological function of EV nucleotide sequences are distinct regarding EV subgroups and differ in tissue- and cell-released EVs. EV DNA is present mainly in apoptotic bodies, while there are different species of EV RNAs in all subgroups of EVs. A limited sample volume of unique human liquid biopsy provides a small amount of EVs with limited isolated DNA and RNA, which can be a challenging factor for EV nucleotide sequence analysis, while the additional difficulty is technical variability of molecular nucleotide detection. Every EV study is challenged with its first step of the EV isolation procedure, which determines the EV’s purity, yield, and diameter range and has an impact on the EV’s downstream analysis with a significant impact on the final result. The gold standard EV isolation procedure with ultracentrifugation provides a low output and not highly pure isolated EVs, while modern techniques increase EV’s yield and purity. Different EV DNA and RNA detection techniques include the PCR procedure for nucleotide sequence replication of the molecules of interest, which can undergo a small-input EV DNA or RNA material. The nucleotide sequence detection approaches with their advantages and disadvantages should be considered to appropriately address the study problem and to extract specific EV nucleotide sequence information with the detection using qPCR or next-generation sequencing. Advanced next-generation sequencing techniques allow the detection of total EV genomic or transcriptomic data even at the single-molecule resolution and thus, offering a sensitive and accurate EV DNA or RNA biomarker detection. Additionally, with the processes where the EV genomic or transcriptomic data profiles are compared to identify characteristic EV differences in specific conditions, novel biomarkers could be discovered. Therefore, a suitable differential expression analysis is crucial to define the EV DNA or RNA differences between conditions under investigation. Further bioinformatics analysis can predict molecular cell targets and identify targeted and affected cellular pathways. The prediction target tools with functional studies are essential to help specify the role of the investigated EV-targeted nucleotide sequences in health and disease and support further development of EV-related therapeutics. This review will discuss the biological diversity of human liquid biopsy–obtained EV nucleotide sequences DNA and RNA species reported as potential biomarkers in health and disease and methodological principles of their detection, from human liquid biopsy EV isolation, EV nucleotide sequence extraction, techniques for their detection, and their cell target prediction.


2021 ◽  
Vol 10 (49) ◽  
Author(s):  
Robert L. Schlub ◽  
Rugang Li ◽  
Jesse P. Bamba ◽  
Mari Marutani ◽  
Kai-Shu Ling

Genome sequences of a novel begomovirus infecting tomato on Guam were obtained using primer-walking and sequencing. The complete genome sequences are 2,750 nucleotides long with a typical monopartite organization and display less than 91% nucleotide sequence identity to other begomoviruses. A provisional name, tomato leaf curl Guam virus (ToLCGuV), is proposed.


Sign in / Sign up

Export Citation Format

Share Document