Cell Lines
Recently Published Documents


TOTAL DOCUMENTS

75046
(FIVE YEARS 22846)

H-INDEX

309
(FIVE YEARS 49)

2022 ◽  
Vol 12 (4) ◽  
pp. 820-826
Author(s):  
Chengyong Wu ◽  
Weifeng Wei ◽  
Jing Li ◽  
Shenglin Peng

Epithelial-mesenchymal transition (EMT) is closely related to the migrating and invading behaviors of cells. Periostin is one of the essential components in the extracellular matrix and can induce EMT of cells and their sequential metastasis. But its underlying mechanism is unclear. The Hela and BMSC cell lines were assigned into Periostin-mimic group, Periostin-Inhibitor group and Periostin-NC group followed by analysis of cell migration and invasion, expression of E-Cadherin, Vimentin, β-Catenin, Snail, MMP-2, MMP-9, PTEN, and p-PTEN. Cells in Periostin-mimic group exhibited lowest migration, least number of invaded cells, as well as lowest levels of Vimentin, β-Catenin, Snail, MMP-2, MMP-9, p-PTEN, Akt, p-Akt, p-GSK-3β, p-PDK1 and p-cRcf, along with highest levels of E-cadherin and PTEN. Moreover, cells in Periostin-NC group had intermediate levels of these above indicators, while, the Periostin-Inhibitor group exhibited the highest migration rate, the most number of invaded cells, and the highest levels of these proteins (P < 0.05). In conclusion, BMSCs-derived Periostin can influence the EMT of cervical cancer cells possibly through restraining the activity of the PI3K/AKT signal transduction pathway, indicating that Periostin might be a target of chemotherapy in clinics for the treatment of cervical cancer.


2022 ◽  
Vol 12 (4) ◽  
pp. 717-723
Author(s):  
Bing Pan ◽  
Binghui Liu ◽  
Juhua Pan ◽  
Jian Xin ◽  
Chenglin Fu

Introduction: Breast cancer (BC) developed in the glandular epithelial tissue of breast. microRNA (miR)-367 is an important player in cancer progression, but has never been studied in BC. This experiment tries to probe the mechanism of miR-367 in BC treatment with downstream target gene. Materials and Methods: Human BC cell lines and healthy breast epithelium cells were applied in this study. After the transfection of miR-367 inhibitor or mimic into BC cells, functional assays were conducted to measure cell growth. Afterwards, flow cytometry was employed in apoptosis verification. Then, target relation between miR-367 and ARID1B was certified. Furthermore, ARID1B level was also measured. Results: miR-367 was underexpressed in human BC cells (p < 0.05). Besides, overexpressed miR-367 inhibited BC cell proliferation and encouraged apoptosis, while underexpressed miR-367 led to an opposite outcome (p < 0.05). This experiment then implied that miR-367 dramatically suppressed the activity of cell transfected with ARID1B-wild type. miR-367 overexpression quenched ARID1B level in BC cells; while silencing miR-367 upregulated ARID1B expression (p < 0.05). Conclusion: Our experiment discovered that miR-367 quenched BC cell growth and promoted apoptosis by targeting ARID1B. This investigation may provide novel insights in BC treatment.


2022 ◽  
Vol 12 (4) ◽  
pp. 747-755
Author(s):  
Shengyong Liu ◽  
Xiangcheng Li

Background: Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide with a poor prognosis. Amounting studies revealed that long non-coding RNAs (lncRNAs) show important roles in various biological processes. The purpose of this study was to explore the biological function and potential molecular mechanism of CASC7 in HCC. Methods: CASC7 expression in HCC cell lines was detected by qRT-PCR. The expressions of CASC7 and miR-340-5p were changed by transfection of miR-340-5p mimic, the CASC7 overexpression and knockdown plasmids. The interaction between CASC7 and miR-340-5p was assessed by a Dual-Luciferase reporter assay. The biological functions of CASC7 were evaluated by CCK-8, colony formation assay, ROS assay kit, immunofluorescence and flow cytometry (FCM). Results: CASC7 was upregulated in HCC cell lines. CASC7 overexpression significantly promoted cell proliferation, as well as inhibited apoptosis and oxidative stress. In contrast, CASC7 knockdown could reverse these above changes. The result of the Dual-luciferase reporter assay revealed that CASC7 directly targeted miR-340-5p and negatively regulated its expression. In addition, CASC7 promoted proliferation and inhibited apoptosis of HCC cells through activating Nrf2 pathway by downregulating miR-340-5p. Conclusions: In summary, CASC7 promotes HCC tumorigenesis and progression through the Nrf2 pathway by targeting miR-340-5p, which may provide a new target for therapy of HCC.


2022 ◽  
Vol 12 (4) ◽  
pp. 701-710
Author(s):  
Ming Liu ◽  
Shenghu Guo ◽  
Jing Cao ◽  
Zheng Wu ◽  
Lei Zhang ◽  
...  

Objective: Our research was to discuss effects and mechanism of lncRNA TUG1 in NSCLC by vitro study. Methods: A549 and H1299 cells were divided into NC, pcDNA 3.1 and lncRNA TUG1 groups. Measuring cell proliferation using CCK-8 assay, cell apoptosis by flow cytometry, invasion cell number by transwell and wound healing rate by wound healing assay. Relative gene and protein expressions by RT-qPCR and WB assay. Results: Compared with NC group, the cell proliferation rate, invasion cell number and wound healing rate were significantly depressed in A549 and H1299 cell lines (P < 0.001, respectively). By RT-qPCR and WB assay, lncRNA TUG1 gene expression were significantly increased (P < 0.001, respectively); E-cadherin gene and protein expression were significantly up-regulation, and N-cadherin and Vimentin gene and protein expressions were significantly depressed compared with those of NC group in A549 and H1299 cell lines (P < 0.001, respectively). Conclusion: lncRNA TUG1 had effects to suppress NSCLC cell biological activities by regulation EMT relative gene and proteins expression in vivo study.


2022 ◽  
Vol 12 (5) ◽  
pp. 926-932
Author(s):  
Xin Guan ◽  
Ning Sun

High expression of E74-like factor 3 (ELF3) has been reported in type 1 endometrial cancer (EC). Bioinformatics analysis predicted a positive correlation with ELF3 and mucin 1 (MUC1)/hypoxiainducible factor 1α (HIF-1α), a previously identified cancer-promoting pathway. This study focused on the MUC1/HIF-1α-involved action mechanism of ELF3 in EC. ELF3 expression in EC cell lines was measured by RT-qPCR and western blot analysis. Following the expression of ELF3 was silent, cell proliferation was examined using CCK-8 and colony formation assay, cell migration and invasion were observed using wound healing and transwell assays. The effect of ELF1 silencing on MUC1/HIF-1α expression was detected by western blot. Rescue experiments incorporating pcDNA3.1(+)/MUC1 explored the interaction between ELF3 and MUC1/HIF-1α in EC cell proliferation, migration and invasion. ELF3 was found to be expressed at a high level in EC cell lines, and the silencing of it effectively inhibited EC cell proliferation. Moreover, ELF silencing also inhibited the migration and invasion of EC cells. Consistent with the database prediction, a positive correlation between ELF3 and MUC1/HIF-1α was observed. More importantly, MUC1 overexpression abated the promotive effect of ELF3 silencing on EC cell proliferation, migration and invasion. ELF3 promotes EC cell proliferation, migration and invasion by regulating MUC1/HIF-1α pathway. Thus, ELF3 as well as MUC1/HIF-1α pathway may be particle targets in the treatment of EC.


BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Tamara Babic ◽  
Sandra Dragicevic ◽  
Marko Miladinov ◽  
Zoran Krivokapic ◽  
Aleksandra Nikolic

Abstract Background Transcripts with alternative 5′-untranslated regions (UTRs) result from the activity of alternative promoters and they can determine gene expression by influencing its stability and translational efficiency, thus executing complex regulation of developmental, physiological and pathological processes. Transcriptional regulation of human SMAD4, a key tumor suppressor deregulated in most gastrointestinal cancers, entails four alternative promoters. These promoters and alternative transcripts they generate remain unexplored as contributors to the SMAD4 deregulation in cancer. The aim of this study was to investigate the relative abundance of the transcript SMAD4–201 in colorectal cell lines and tissues in order to establish if its fluctuations may be associated with colorectal cancer (CRC). Methods Relative abundance of SMAD4–201 in total SMAD4 mRNA was analyzed using quantitative PCR in a set of permanent human colon cell lines and tumor and corresponding healthy tissue samples from patients with CRC. Results The relative abundance of SMAD4–201 in analyzed cell lines varied between 16 and 47%. A similar relative abundance of SMAD4–201 transcript was found in the majority of analyzed human tumor tissue samples, and it was averagely 20% lower in non-malignant in comparison to malignant tissue samples (p = 0.001). Transcript SMAD4–202 was not detectable in any of the analyzed samples, so the observed fluctuations in the composition of SMAD4 transcripts can be attributed to transcripts other than SMAD4–201 and SMAD4–202. Conclusion The expression profile of SMAD4–201 in human tumor and non-tumor tissue samples may indicate the translational potential of this molecule in CRC, but further research is needed to clarify its usability as a potential biomarker for early diagnosis.


2022 ◽  
Vol 46 (1) ◽  
Author(s):  
Eman Zakaria Gomaa

Abstract Background Halophiles are an excellent source of enzymes that are not only salt stable, but also can withstand and carry out reaction efficiently under extreme conditions. l-glutaminase has attracted much attention with respect to proposed applications in several fields such as pharmaceuticals and food industries. The aim of the present study was to investigate the anticancer activity of l-glutaminase produced by halophilic bacteria. Various halophilic bacterial strains were screened for extracellular l-glutaminase production. An attempt was made to study the optimization, purification, and characterization of l-glutaminase from Bacillus sp. DV2-37. The antitumor activity of the produced enzyme was also investigated. Results The potentiality of 15 halophilic bacterial strains isolated from the marine environment that produced extracellular l-glutaminase was investigated. Bacillus sp. DV2-37 was selected as the most potent strain and optimized for enzyme production. The optimization of fermentation process revealed that the highest enzyme activity (47.12 U/ml) was observed in a medium supplemented with 1% (w/v) glucose as a carbon source, 1% (w/v) peptone as a nitrogen source, 5% (w/v) NaCl, the initial pH was 7.0, at 37 °C, using 20% (v/v) inoculum size after 96 h of incubation. The produced crude enzyme was partially purified by ammonium sulfate precipitation and dialysis. Of the various parameters tested, pH 7, 40 °C, and 5% NaCl were found to be the best for l-glutaminase activity. The enzyme also exhibited high salt and temperature stability. The antitumor effect against human breast (MCF-7), hepatocellular (HepG-2), and colon (HCT-116) carcinoma cell lines revealed that l-glutaminase produced by Bacillus sp. DV2-37 showed potent cytotoxic activity of all the tested cell lines in a dose-dependent manner with an IC50 value of 3.5, 3.4, and 3.8 µg/ml, respectively. Conclusions The present study proved that l-glutaminase produced by marine bacteria holds proper features and it has a high potential to be useful for many therapeutic applications.


Author(s):  
Jihua Li ◽  
Fengfeng Zhu ◽  
Weiguo Xu ◽  
Ping Che

IntroductionIsoliquiritigenin, one of the components in the root of Glycyrrhiza glabra L., is a member of the flavonoids, which are known to have an anti-tumor activity in vitro and in vivo. HMG-CoA reductase inhibitors, called statins, are used to reduce the risk of heart disease by lowering blood cholesterol levels.Material and methodsHMG-CoA Reductase activity according to the method described by Takahashi S. et al. The structure of human HMG-COA reductase in the resolution of 2.22 Å with X-RAY diffraction method (PDB ID: 1HWK) was obtained from the PDB database.ResultsIn our study, inhibition result of Isoliquiritigenin on HMG-CoA reductase showed lower value IC50 = 193.77±14.85 µg / mL. For a better understanding of biological activities and interactions, the molecular docking study was accomplished. The results of molecular docking revealed that isoliquiritigenin with a docking score of -6.740 has a strong binding affinity to the HMG-COA reductase. Therefore, this compound could be considered as a potential inhibitor for the enzyme. Also, the properties of Isoliquiritigenin against common human pancreatic acinar cell tumor cell lines i.e. 266-6, TGP49, and TGP47 were evaluated.ConclusionsThe treated cells with Isoliquiritigenin were assessed by MTT assay for 48h about the cytotoxicity and anti-human pancreatic acinar cell tumor properties on normal (HUVEC) and human pancreatic acinar cell tumor cell lines i.e. 266-6, TGP49, and TGP47. The IC50 of Isoliquiritigenin were 262, 389, and 211 µg/mL against 266-6, TGP49, and TGP47 cell lines, respectively.


2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Kendra R. Vann ◽  
Dhananjaya Pal ◽  
Audrey L. Smith ◽  
Namood-e Sahar ◽  
Maddeboina Krishnaiah ◽  
...  

AbstractMantle cell lymphoma (MCL) is a subtype of non-Hodgkin’s lymphoma characterized by poor prognosis. The complexity of MCL pathogenesis arises from aberrant activities of diverse signaling pathways, including BTK, PI3K–AKT–mTOR and MYC-BRD4. Here, we report that MCL-related signaling pathways can be altered by a single small molecule inhibitor, SRX3305. Binding and kinase activities along with resonance changes in NMR experiments reveal that SRX3305 targets both bromodomains of BRD4 and is highly potent in inhibition of the PI3K isoforms α, γ and δ, as well as BTK and the drug-resistant BTK mutant. Preclinical investigations herein reveal that SRX3305 perturbs the cell cycle, promotes apoptosis in MCL cell lines and shows dose dependent anti-proliferative activity in both MCL and drug-resistant MCL cells. Our findings underscore the effectiveness of novel multi-action small molecule inhibitors for potential treatment of MCL.


Sign in / Sign up

Export Citation Format

Share Document