A numerical study of magneto‐double‐diffusive‐convection of Casson fluid over a vertical cone under nonuniform heating at surface of cone

Heat Transfer ◽  
2020 ◽  
Author(s):  
Richa Rajora ◽  
Anand Kumar
1982 ◽  
Vol 104 (4) ◽  
pp. 649-655 ◽  
Author(s):  
S. Takao ◽  
M. Tsuchiya ◽  
U. Narusawa

When a fluid with a vertical solute gradient of (−dS/dy)0 is heated laterally, roll cells start to form at the boundary, developing into a series of convective layers. Numerical experiments were performed to investigate the onset of the abovementioned double-diffusive convection under the application of a uniform lateral heat flux. The paper reports the results and discussion of the following aspects of the stability of double-diffusive convection; (i) the relationship between the critical value, (Ra/Rs)c, above which convection cells form along the vertical wall and the nondimensional slot width, (d/L), (ii) the effect of the Lewis number on (Ra/Rs)c. It was also confirmed that values of (Ra/Rs)c as well as H/L (the nondimensional vertical size of incipient cells) obtained in this numerical experiment for wide slot widths (d/L>∼30), agreed well with those obtained previously by physical experiments.


Sign in / Sign up

Export Citation Format

Share Document