lorentz force
Recently Published Documents


TOTAL DOCUMENTS

1128
(FIVE YEARS 250)

H-INDEX

41
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Yoshie Yachi ◽  
Takeshi Kai ◽  
Yusuke Matsuya ◽  
Yuho Hirata ◽  
Yuji Yoshii ◽  
...  

Abstract Magnetic resonance-guided radiotherapy (MRgRT) has been developed and installed in recent decades for external radiotherapy in several clinical facilities. The Lorentz force modulates dose distribution by charged particles in MRgRT; however, the impact by this force on low-energy electron track structure and early DNA damage induction remain unclear. In this study, we estimated features of electron track structure and biological effects in a static magnetic field (SMF) using a general-purpose Monte Carlo code, Particle and Heavy Ion Transport code System (PHITS) that enables us to simulate low-energy electrons down to 1 meV by track-structure mode. The macroscopic dose distributions by electrons above approximately 300 keV initial energy in liquid water are changed by both perpendicular and parallel SMFs against the incident direction, indicating that the Lorentz force plays an important role in calculating dose within tumours. Meanwhile, DNA damage estimation based on the spatial patterns of atomic interactions indicates that the initial yield of DNA double-strand breaks (DSBs) is independent of the SMF intensity. The DSB induction is predominantly attributed to the secondary electrons below a few tens of eV, which are not affected by the Lorentz force. Our simulation study suggests that treatment planning for MRgRT can be made with consideration of only changed dose distribution.


2021 ◽  
Vol 55 (13) ◽  
pp. 135201
Author(s):  
Ryoji Imai ◽  
Kazunori Takahashi

Abstract Two-dimensional characterization of the plasma plume is experimentally performed downstream of a magnetically steered radiofrequency plasma thruster, where the ion beam current, the ion saturation current, and the horizontal dynamic momentum flux, are measured by using the retarding field energy analyzer, the Langmuir probe, and the momentum vector measurement instrument, respectively, in addition to the previously measured horizontal thrust. The measurements show the deflections of the dynamic momentum flux including both the ions and the neutrals; the change in the direction of the dynamic momentum flux is consistent with the previously measured horizontal thrust. Furthermore, the ion saturation current profile implies that the deflected electron-diamagnetic-induced Lorentz force exerted to the magnetic nozzle contributes to the change in the thrust vector. Therefore, it is demonstrated that the deflections of both the dynamic momentum flux and the electron-diamagnetic-induced Lorentz force play an important role in the thrust vector control by the magnetic steering.


2021 ◽  
Author(s):  
Sangwha Yi

In the special relativity theory, we know how Lorentz 4-force is invariant in special relativity theory.


2021 ◽  
Author(s):  
Sangwha Yi

In the general relativity theory, we find the electro-magnetic wave function and equation in Rindlerspace-time. Specially, this article is that electromagnetic wave equation is corrected by the gauge fixingequation in Rindler space-time. We define the force in Rindler space-time We find Lorentz force(electromagnetic force) by electro-magnetic field transformations in Rindler space-time. In the inertial frame, Lorentz force is defined as 4-dimensional force. Hence, we had to obtain 4-dimensional force in Rindler space-time. We define energy-momentum in Rindler space-time.


2021 ◽  
Vol 922 (2) ◽  
pp. L38
Author(s):  
Christopher F. Chyba ◽  
Kevin P. Hand

Abstract Two forms of ohmic heating of astrophysical secondaries have received particular attention: unipolar-generator heating with currents running between the primary and secondary, and magnetic induction heating due to the primary’s time-varying field. Neither appears to cause significant dissipation in the contemporary solar system. But these discussions have overlooked heating derived from the spatial variation of the primary’s field across the interior of the secondary. This leads to Lorentz-force-driven currents around paths entirely internal to the secondary, with resulting ohmic heating. We examine three ways to drive such currents, by the cross product of (1) the secondary’s azimuthal orbital velocity with the nonaxially symmetric field of the primary, (2) the radial velocity (due to nonzero eccentricity) of the secondary with the primary’s field, or (3) the out-of-plane velocity (due to nonzero inclination) with the primary’s field. The first of these operates even for a spin-locked secondary whose orbit has zero eccentricity, in strong contrast to tidal dissipation. We show that Jupiter’s moon Io today could dissipate about 600 GW (more than likely current radiogenic heating) in the outer 100 m of its metallic core by this mechanism. Had Io ever been at 3 Jovian radii instead of its current 5.9, it could have been dissipating 15,000 GW. Ohmic dissipation provides a mechanism that could operate in any solar system to drive inward migration of secondaries that then necessarily comes to a halt upon reaching a sufficiently close distance to the primary.


2021 ◽  
Vol 72 (6) ◽  
pp. 366-373
Author(s):  
Steffen Kühn

Abstract The magnetic component of the Lorentz force acts exclusively perpendicular to the direction of motion of a test charge, whereas the electric component does not depend on the velocity of the charge. This article provides experimental indication that, in addition to these two forces, there is a third electromagnetic force that (i) is proportional to the velocity of the test charge and (ii) acts parallel to the direction of motion rather than perpendicular. This force cannot be explained by the Maxwell equations and the Lorentz force, since it is mathematically incompatible with this framework. However, this force is compatible with Weber electrodynamics and Ampère’s original force law, as this older form of electrodynamics not only predicts the existence of such a force but also makes it possible to accurately calculate the strength of this force.


2021 ◽  
Vol 33 (12) ◽  
pp. 123601
Author(s):  
Weiguang Yao ◽  
Hui Zhang ◽  
Daiwen Jiang ◽  
Mingyue Gui ◽  
Zijie Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document