Planar graph colorings without short monochromatic cycles

2004 ◽  
Vol 46 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Tom�? Kaiser ◽  
Riste ?krekovski
Keyword(s):  
2007 ◽  
Vol 44 (3) ◽  
pp. 411-422 ◽  
Author(s):  
János Barát ◽  
Péter Varjú

A sequence of symbols a1 , a2 … is called square-free if it does not contain a subsequence of consecutive terms of the form x1 , …, xm , x1 , …, xm . A century ago Thue showed that there exist arbitrarily long square-free sequences using only three symbols. Sequences can be thought of as colors on the vertices of a path. Following the paper of Alon, Grytczuk, Hałuszczak and Riordan, we examine graph colorings for which the color sequence is square-free on any path. The main result is that the vertices of any k -tree have a coloring of this kind using O ( ck ) colors if c > 6. Alon et al. conjectured that a fixed number of colors suffices for any planar graph. We support this conjecture by showing that this number is at most 12 for outerplanar graphs. On the other hand we prove that some outerplanar graphs require at least 7 colors. Using this latter we construct planar graphs, for which at least 10 colors are necessary.


Author(s):  
P.J. Phillips ◽  
J. Huang ◽  
S. M. Dunn

In this paper we present an efficient algorithm for automatically finding the correspondence between pairs of stereo micrographs, the key step in forming a stereo image. The computation burden in this problem is solving for the optimal mapping and transformation between the two micrographs. In this paper, we present a sieve algorithm for efficiently estimating the transformation and correspondence.In a sieve algorithm, a sequence of stages gradually reduce the number of transformations and correspondences that need to be examined, i.e., the analogy of sieving through the set of mappings with gradually finer meshes until the answer is found. The set of sieves is derived from an image model, here a planar graph that encodes the spatial organization of the features. In the sieve algorithm, the graph represents the spatial arrangement of objects in the image. The algorithm for finding the correspondence restricts its attention to the graph, with the correspondence being found by a combination of graph matchings, point set matching and geometric invariants.


2021 ◽  
Vol 95 ◽  
pp. 103319
Author(s):  
Zdeněk Dvořák ◽  
Carl Feghali
Keyword(s):  

Author(s):  
MohammadHossein Bateni ◽  
MohammadTaghi Hajiaghayi ◽  
Erik D. Demaine ◽  
Mohammad Moharrami

1996 ◽  
Vol 28 (2) ◽  
pp. 331-331
Author(s):  
Richard Cowan ◽  
Simone Chen

Consider a connected planar graph. A bounded face is said to be of type k, or is called a k-face, if the boundary of that face contains k edges. Under various natural rules for randomly dividing bounded faces by the addition of new edges, we investigate the limiting distribution of face type as the number of divisions increases.


2012 ◽  
Vol 04 (04) ◽  
pp. 1250047 ◽  
Author(s):  
AIJUN DONG ◽  
GUANGHUI WANG

A proper [k]-edge coloring of a graph G is a proper edge coloring of G using colors of the set [k] = {1, 2,…,k}. A neighbor sum distinguishing [k]-edge coloring of G is a proper [k]-edge coloring of G such that for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. By ndiΣ(G), we denote the smallest value k in such a coloring of G. In this paper, we obtain that (1) ndiΣ(G) ≤ max {2Δ(G) + 1, 25} if G is a planar graph, (2) ndiΣ(G) ≤ max {2Δ(G), 19} if G is a graph such that mad(G) ≤ 5.


Sign in / Sign up

Export Citation Format

Share Document