type method
Recently Published Documents


TOTAL DOCUMENTS

839
(FIVE YEARS 170)

H-INDEX

40
(FIVE YEARS 4)

Foundations ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 114-127
Author(s):  
Samundra Regmi ◽  
Christopher I. Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George

The celebrated Traub’s method involving Banach space-defined operators is extended. The main feature in this study involves the determination of a subset of the original domain that also contains the Traub iterates. In the smaller domain, the Lipschitz constants are smaller too. Hence, a finer analysis is developed without the usage of additional conditions. This methodology applies to other methods. The examples justify the theoretical results.


2022 ◽  
Vol 6 (1) ◽  
pp. 46
Author(s):  
Fouad Othman Mallawi ◽  
Ramandeep Behl ◽  
Prashanth Maroju

There are very few papers that talk about the global convergence of iterative methods with the help of Banach spaces. The main purpose of this paper is to discuss the global convergence of third order iterative method. The convergence analysis of this method is proposed under the assumptions that Fréchet derivative of first order satisfies continuity condition of the Hölder. Finally, we consider some integral equation and boundary value problem (BVP) in order to illustrate the suitability of theoretical results.


Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Valeriy Nikonov

One of the most important and complex effects in compressible fluid flow simulation is a shock-capturing mechanism. Numerous high-resolution Euler-type methods have been proposed to resolve smooth flow scales accurately and to capture the discontinuities simultaneously. One of the disadvantages of these methods is a numerical viscosity for shocks. In the shock, the flow parameters change abruptly at a distance equal to the mean free path of a gas molecule, which is much smaller than the cell size of the computational grid. Due to the numerical viscosity, the aforementioned Euler-type methods stretch the parameter change in the shock over few grid cells. We introduce a semi-Lagrangian Godunov-type method without numerical viscosity for shocks. Another well-known approach is a method of characteristics that has no numerical viscosity and uses the Riemann invariants or solvers for water hammer phenomenon modeling, but in its formulation the convective terms are typically neglected. We use a similar approach to solve the one-dimensional adiabatic gas dynamics equations, but we split the equations into parts describing convection and acoustic processes separately, with corresponding different time steps. When we are looking for the solution to the one-dimensional problem of the scalar hyperbolic conservation law by the proposed method, we additionally use the iterative Godunov exact solver, because the Riemann invariants are non-conserved for moderate and strong shocks in an ideal gas. The proposed method belongs to a group of particle-in-cell (PIC) methods; to the best of the author’s knowledge, there are no similar PIC numerical schemes using the Riemann invariants or the iterative Godunov exact solver. This article describes the application of the aforementioned method for the inviscid Burgers’ equation, adiabatic gas dynamics equations, and the one-dimensional scalar hyperbolic conservation law. The numerical analysis results for several test cases (e.g., the standard shock-tube problem of Sod, the Riemann problem of Lax, the double expansion wave problem, the Shu–Osher shock-tube problem) are compared with the exact solution and Harten’s data. In the shock for the proposed method, the flow properties change instantaneously (with an accuracy dependent on the grid cell size). The iterative Godunov exact solver determines the accuracy of the proposed method for flow discontinuities. In calculations, we use the iteration termination condition less than 10−5 to find the pressure difference between the current and previous iterations.


Author(s):  
Kevin McGuigan ◽  
Kieran Collins ◽  
Kevin McDaid

Analysis of 3926 shots from the 2019 Senior inter-county football championship aims to establish the impact of distance, angle, shot type, method and pressure on shot success. Findings demonstrate that shots from free kicks contribute 20.5% of the total attempts in Gaelic football, with a success rate of 75%, in contrast to 50% success of shots from open play. Moreover, the range from which free kick success is >57.6% accuracy extends to 40 m, while from open play this is passed at a range of 28 m. There were almost twice as many right foot shots (64.4%) compared with the left foot (32.4%), with right foot attempts marginally more accurate. Shots under low pressure were most successful, while those under medium pressure were less successful than those under high pressure, albeit taken from an average distance of 7.5 m closer to the target. A logistic regression model to explore the impact of all variables on shot outcome demonstrates the significance of shot distance, angle and pressure on the kicker, as well as whether shots are taken with the hand or foot. This research provides an important step in understanding the scale of the impact of a range of variables on shot success in Gaelic football while simultaneously providing an initial model to predict the shot outcome based on these variables.


Author(s):  
Khaldoun El Khaldi ◽  
Nima Rabiei ◽  
Elias G. Saleeby

Abstract Multistaged crystallization systems are used in the production of many chemicals. In this article, employing the population balance framework, we develop a model for a column crystallizer where particle agglomeration is a significant growth mechanism. The main part of the model can be reduced to a system of integrodifferential equations (IDEs) of the Volterra type. To solve this system simultaneously, we examine two numerical schemes that yield a direct method of solution and an implicit Runge–Kutta type method. Our numerical experiments show that the extension of a Hermite predictor–corrector method originally advanced in Khanh (1994) for a single IDE is effective in solving our model. The numerical method is presented for a generalization of the model which can be used to study and simulate a number of possible operating profiles of the column.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2281
Author(s):  
Christopher I. Argyros ◽  
Ioannis K. Argyros ◽  
Janak Joshi ◽  
Samundra Regmi ◽  
Santhosh George

Symmetries play a crucial role in the dynamics of physical systems. As an example, microworld and quantum physics problems are modeled on principles of symmetry. These problems are then formulated as equations defined on suitable abstract spaces. Then, these equations can be solved using iterative methods. In this article, an Ostrowski-type method for solving equations in Banach space is extended. This is achieved by finding a stricter set than before containing the iterates. The convergence analysis becomes finer. Due to the general nature of our technique, it can be utilized to enlarge the utilization of other methods. Examples finish the paper.


Sign in / Sign up

Export Citation Format

Share Document