edge coloring
Recently Published Documents


TOTAL DOCUMENTS

538
(FIVE YEARS 136)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
Vol 310 ◽  
pp. 65-74
Author(s):  
Zhengke Miao ◽  
Yimin Song ◽  
Gexin Yu
Keyword(s):  

2022 ◽  
Vol 309 ◽  
pp. 258-264
Author(s):  
Qing Cui ◽  
Zhenmeng Han
Keyword(s):  

2022 ◽  
Vol 69 (1) ◽  
pp. 1-26
Author(s):  
Leonid Barenboim ◽  
Michael Elkin ◽  
Uri Goldenberg

We consider graph coloring and related problems in the distributed message-passing model. Locally-iterative algorithms are especially important in this setting. These are algorithms in which each vertex decides about its next color only as a function of the current colors in its 1-hop-neighborhood . In STOC’93 Szegedy and Vishwanathan showed that any locally-iterative Δ + 1-coloring algorithm requires Ω (Δ log Δ + log * n ) rounds, unless there exists “a very special type of coloring that can be very efficiently reduced” [ 44 ]. No such special coloring has been found since then. This led researchers to believe that Szegedy-Vishwanathan barrier is an inherent limitation for locally-iterative algorithms and to explore other approaches to the coloring problem [ 2 , 3 , 19 , 32 ]. The latter gave rise to faster algorithms, but their heavy machinery that is of non-locally-iterative nature made them far less suitable to various settings. In this article, we obtain the aforementioned special type of coloring. Specifically, we devise a locally-iterative Δ + 1-coloring algorithm with running time O (Δ + log * n ), i.e., below Szegedy-Vishwanathan barrier. This demonstrates that this barrier is not an inherent limitation for locally-iterative algorithms. As a result, we also achieve significant improvements for dynamic, self-stabilizing, and bandwidth-restricted settings. This includes the following results: We obtain self-stabilizing distributed algorithms for Δ + 1-vertex-coloring, (2Δ - 1)-edge-coloring, maximal independent set, and maximal matching with O (Δ + log * n ) time. This significantly improves previously known results that have O(n) or larger running times [ 23 ]. We devise a (2Δ - 1)-edge-coloring algorithm in the CONGEST model with O (Δ + log * n ) time and O (Δ)-edge-coloring in the Bit-Round model with O (Δ + log n ) time. The factors of log * n and log n are unavoidable in the CONGEST and Bit-Round models, respectively. Previously known algorithms had superlinear dependency on Δ for (2Δ - 1)-edge-coloring in these models. We obtain an arbdefective coloring algorithm with running time O (√ Δ + log * n ). Such a coloring is not necessarily proper, but has certain helpful properties. We employ it to compute a proper (1 + ε)Δ-coloring within O (√ Δ + log * n ) time and Δ + 1-coloring within O (√ Δ log Δ log * Δ + log * n ) time. This improves the recent state-of-the-art bounds of Barenboim from PODC’15 [ 2 ] and Fraigniaud et al. from FOCS’16 [ 19 ] by polylogarithmic factors. Our algorithms are applicable to the SET-LOCAL model [ 25 ] (also known as the weak LOCAL model). In this model a relatively strong lower bound of Ω (Δ 1/3 ) is known for Δ + 1-coloring. However, most of the coloring algorithms do not work in this model. (In Reference [ 25 ] only Linial’s O (Δ 2 )-time algorithm and Kuhn-Wattenhofer O (Δ log Δ)-time algorithms are shown to work in it.) We obtain the first linear-in-Δ Δ + 1-coloring algorithms that work also in this model.


2022 ◽  
Vol 7 ◽  
pp. e836
Author(s):  
Sebastian Mihai Ardelean ◽  
Mihai Udrescu

Genetic algorithms (GA) are computational methods for solving optimization problems inspired by natural selection. Because we can simulate the quantum circuits that implement GA in different highly configurable noise models and even run GA on actual quantum computers, we can analyze this class of heuristic methods in the quantum context for NP-hard problems. This paper proposes an instantiation of the Reduced Quantum Genetic Algorithm (RQGA) that solves the NP-hard graph coloring problem in O(N1/2). The proposed implementation solves both vertex and edge coloring and can also determine the chromatic number (i.e., the minimum number of colors required to color the graph). We examine the results, analyze the algorithm convergence, and measure the algorithm's performance using the Qiskit simulation environment. Our Reduced Quantum Genetic Algorithm (RQGA) circuit implementation and the graph coloring results show that quantum heuristics can tackle complex computational problems more efficiently than their conventional counterparts.


Author(s):  
Vikram Srinivasan Thiru ◽  
S. Balaji

The strong edge coloring of a graph G is a proper edge coloring that assigns a different color to any two edges which are at most two edges apart. The minimum number of color classes that contribute to such a proper coloring is said to be the strong chromatic index of G. This paper defines the strong chromatic index for the generalized Jahangir graphs and the generalized Helm graphs.


Author(s):  
Baya Ferdjallah ◽  
Samia Kerdjoudj ◽  
André Raspaud

An injective edge-coloring [Formula: see text] of a graph [Formula: see text] is an edge-coloring such that if [Formula: see text], [Formula: see text], and [Formula: see text] are three consecutive edges in [Formula: see text] (they are consecutive if they form a path or a cycle of length three), then [Formula: see text] and [Formula: see text] receive different colors. The minimum integer [Formula: see text] such that, [Formula: see text] has an injective edge-coloring with [Formula: see text] colors, is called the injective chromatic index of [Formula: see text] ([Formula: see text]). This parameter was introduced by Cardoso et al. [Injective coloring of graphs, Filomat 33(19) (2019) 6411–6423, arXiv:1510.02626] motivated by the Packet Radio Network problem. They proved that computing [Formula: see text] of a graph [Formula: see text] is NP-hard. We give new upper bounds for this parameter and we present the relationships of the injective edge-coloring with other colorings of graphs. We study the injective edge-coloring of some classes of subcubic graphs. We prove that a subcubic bipartite graph has an injective chromatic index bounded by [Formula: see text]. We also prove that if [Formula: see text] is a subcubic graph with maximum average degree less than [Formula: see text] (respectively, [Formula: see text]), then [Formula: see text] admits an injective edge-coloring with at most 4 (respectively, [Formula: see text]) colors. Moreover, we establish a tight upper bound for subcubic outerplanar graphs.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3209
Author(s):  
Jelena Sedlar ◽  
Riste Škrekovski

A locally irregular graph is a graph in which the end vertices of every edge have distinct degrees. A locally irregular edge coloring of a graph G is any edge coloring of G such that each of the colors induces a locally irregular subgraph of G. A graph G is colorable if it allows a locally irregular edge coloring. The locally irregular chromatic index of a colorable graph G, denoted by χirr′(G), is the smallest number of colors used by a locally irregular edge coloring of G. The local irregularity conjecture claims that all graphs, except odd-length paths, odd-length cycles and a certain class of cacti are colorable by three colors. As the conjecture is valid for graphs with a large minimum degree and all non-colorable graphs are vertex disjoint cacti, we study rather sparse graphs. In this paper, we give a cactus graph B which contradicts this conjecture, i.e., χirr′(B)=4. Nevertheless, we show that the conjecture holds for unicyclic graphs and cacti with vertex disjoint cycles.


10.37236/9914 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Louis DeBiasio ◽  
Yigal Kamel ◽  
Grace McCourt ◽  
Hannah Sheats

Ryser's conjecture says that for every $r$-partite hypergraph $H$ with matching number $\nu(H)$, the vertex cover number is at most $(r-1)\nu(H)$.  This far-reaching generalization of König's theorem is only known to be true for $r\leq 3$, or when $\nu(H)=1$ and $r\leq 5$.  An equivalent formulation of Ryser's conjecture is that in every $r$-edge coloring of a graph $G$ with independence number $\alpha(G)$, there exists at most $(r-1)\alpha(G)$ monochromatic connected subgraphs which cover the vertex set of $G$.   We make the case that this latter formulation of Ryser's conjecture naturally leads to a variety of stronger conjectures and generalizations to hypergraphs and multipartite graphs.  Regarding these generalizations and strengthenings, we survey the known results, improving upon some, and we introduce a collection of new problems and results.


Sign in / Sign up

Export Citation Format

Share Document