The random division of faces in a planar graph

1996 ◽  
Vol 28 (2) ◽  
pp. 331-331
Author(s):  
Richard Cowan ◽  
Simone Chen

Consider a connected planar graph. A bounded face is said to be of type k, or is called a k-face, if the boundary of that face contains k edges. Under various natural rules for randomly dividing bounded faces by the addition of new edges, we investigate the limiting distribution of face type as the number of divisions increases.

1996 ◽  
Vol 28 (02) ◽  
pp. 331
Author(s):  
Richard Cowan ◽  
Simone Chen

Consider a connected planar graph. A bounded face is said to be of type k, or is called a k-face, if the boundary of that face contains k edges. Under various natural rules for randomly dividing bounded faces by the addition of new edges, we investigate the limiting distribution of face type as the number of divisions increases.


1996 ◽  
Vol 28 (02) ◽  
pp. 377-383 ◽  
Author(s):  
Richard Cowan ◽  
Simone Chen

A planar graph contains faces which can be classified into types depending on the number of edges on the face boundaries. Under various natural rules for randomly dividing faces by the addition of new edges, we investigate the limiting distribution of face type as the number of divisions increases.


1996 ◽  
Vol 28 (2) ◽  
pp. 377-383 ◽  
Author(s):  
Richard Cowan ◽  
Simone Chen

A planar graph contains faces which can be classified into types depending on the number of edges on the face boundaries. Under various natural rules for randomly dividing faces by the addition of new edges, we investigate the limiting distribution of face type as the number of divisions increases.


10.37236/3476 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Ruy Fabila-Monroy ◽  
David R. Wood

Let $a,b,c,d$ be four vertices in a graph $G$. A $K_4$ minor rooted at $a,b,c,d$ consists of four pairwise-disjoint pairwise-adjacent connected subgraphs of $G$, respectively containing $a,b,c,d$. We characterise precisely when $G$ contains a $K_4$-minor rooted at $a,b,c,d$ by describing six classes of obstructions, which are the edge-maximal graphs containing no $K_4$-minor rooted at $a,b,c,d$. The following two special cases illustrate the full characterisation: (1) A 4-connected non-planar graph contains a $K_4$-minor rooted at $a,b,c,d$ for every choice of $a,b,c,d$. (2) A 3-connected planar graph contains a $K_4$-minor rooted at $a,b,c,d$ if and only if $a,b,c,d$ are not on a single face.


Author(s):  
Yu.M. Bogdanov ◽  
◽  
S.A. Selivanov ◽  
A.V. Sinitsyn ◽  
A.A. Sinitsyn ◽  
...  

The article is devoted to the search for solutions to optimize multiservice network traffic taking according the switching matrix by increasing the capabilities of network equipment with restrictions on their number with the ability to implement the algorithm as a Virtual Network Function for a Software-Defined Network. It is assumed that the networks are represented by an undirected complete connected planar graph.


2014 ◽  
Vol 24 (1) ◽  
pp. 145-178 ◽  
Author(s):  
GUILLAUME CHAPUY ◽  
ÉRIC FUSY ◽  
OMER GIMÉNEZ ◽  
MARC NOY

We show that the diameter diam(Gn) of a random labelled connected planar graph withnvertices is equal ton1/4+o(1), in probability. More precisely, there exists a constantc> 0 such that$$ P(\D(G_n)\in(n^{1/4-\e},n^{1/4+\e}))\geq 1-\exp(-n^{c\e}) $$for ε small enough andn ≥ n0(ε). We prove similar statements for 2-connected and 3-connected planar graphs and maps.


2020 ◽  
Vol 64 (3) ◽  
pp. 759-775
Author(s):  
Herbert Edelsbrunner ◽  
Katharina Ölsböck

Abstract Generalizing the decomposition of a connected planar graph into a tree and a dual tree, we prove a combinatorial analog of the classic Helmholtz–Hodge decomposition of a smooth vector field. Specifically, we show that for every polyhedral complex, K, and every dimension, p, there is a partition of the set of p-cells into a maximal p-tree, a maximal p-cotree, and a collection of p-cells whose cardinality is the p-th reduced Betti number of K. Given an ordering of the p-cells, this tri-partition is unique, and it can be computed by a matrix reduction algorithm that also constructs canonical bases of cycle and boundary groups.


10.37236/635 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Guantao Chen ◽  
Yoshimi Egawa ◽  
Ken-ichi Kawarabayashi ◽  
Bojan Mohar ◽  
Katsuhiro Ota

The toughness of a non-complete graph $G$ is the minimum value of $\frac{|S|}{\omega(G-S)}$ among all separating vertex sets $S\subset V(G)$, where $\omega(G-S)\ge 2$ is the number of components of $G-S$. It is well-known that every $3$-connected planar graph has toughness greater than $1/2$. Related to this property, every $3$-connected planar graph has many good substructures, such as a spanning tree with maximum degree three, a $2$-walk, etc. Realizing that 3-connected planar graphs are essentially the same as 3-connected $K_{3,3}$-minor-free graphs, we consider a generalization to $a$-connected $K_{a,t}$-minor-free graphs, where $3\le a\le t$. We prove that there exists a positive constant $h(a,t)$ such that every $a$-connected $K_{a,t}$-minor-free graph $G$ has toughness at least $h(a,t)$. For the case where $a=3$ and $t$ is odd, we obtain the best possible value for $h(3,t)$. As a corollary it is proved that every such graph of order $n$ contains a cycle of length $\Omega(\log_{h(a,t)} n)$.


Sign in / Sign up

Export Citation Format

Share Document