scholarly journals The node cop‐win reliability of unicyclic and bicyclic graphs

Networks ◽  
2021 ◽  
Author(s):  
Maimoonah Ahmed ◽  
Ben Cameron
Keyword(s):  



2010 ◽  
Vol 158 (17) ◽  
pp. 1953-1962 ◽  
Author(s):  
Qin Zhao ◽  
Shuchao Li


2012 ◽  
Vol 182 (2) ◽  
pp. 175-192 ◽  
Author(s):  
Zhongzhu Liu ◽  
Bo Zhou
Keyword(s):  


Author(s):  
Shamaila Yousaf ◽  
Akhlaq Ahmad Bhatti

The total irregularity index of a graph [Formula: see text] is defined by Abdo et al. [H. Abdo, S. Brandt and D. Dimitrov, The total irregularity of a graph, Discrete Math. Theor. Comput. Sci. 16 (2014) 201–206] as [Formula: see text], where [Formula: see text] denotes the degree of a vertex [Formula: see text]. In 2014, You et al. [L. H. You, J. S. Yang and Z. F. You, The maximal total irregularity of unicyclic graphs, Ars Comb. 114 (2014) 153–160.] characterized the graph having maximum [Formula: see text] value among all elements of the class [Formula: see text] (Unicyclic graphs) and Zhou et al. [L. H. You, J. S. Yang, Y. X. Zhu and Z. F. You, The maximal total irregularity of bicyclic graphs, J. Appl. Math. 2014 (2014) 785084, http://dx.doi.org/10.1155/2014/785084 ] characterized the graph having maximum [Formula: see text] value among all elements of the class [Formula: see text] (Bicyclic graphs). In this paper, we characterize the aforementioned graphs with an alternative but comparatively simple approach. Also, we characterized the graphs having maximum [Formula: see text] value among the classes [Formula: see text] (Tricyclic graphs), [Formula: see text] (Tetracyclic graphs), [Formula: see text] (Pentacyclic graphs) and [Formula: see text] (Hexacyclic graphs).



Author(s):  
R. Khoeilar ◽  
A. Jahanbani ◽  
L. Shahbazi ◽  
J. Rodríguez

The [Formula: see text]-index of a graph [Formula: see text], denoted by [Formula: see text], is defined as the sum of weights [Formula: see text] over all edges [Formula: see text] of [Formula: see text], where [Formula: see text] denotes the degree of a vertex [Formula: see text]. In this paper, we give sharp upper bounds of the [Formula: see text]-index (forgotten topological index) over bicyclic graphs, in terms of the order and maximum degree.



2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ali Ghalavand ◽  
Ali Reza Ashrafi ◽  
Mardjan Hakimi-Nezhaad

Let G be a graph with edge set E G and e = u v ∈ E G . Define n u e , G and m u e , G to be the number of vertices of G closer to u than to v and the number of edges of G closer to u than to v , respectively. The numbers n v e , G and m v e , G can be defined in an analogous way. The Mostar and edge Mostar indices of G are new graph invariants defined as M o G = ∑ u v ∈ E G n u u v , G − n v u v , G and M o e G = ∑ u v ∈ E G m u u v , G − m v u v , G , respectively. In this paper, an upper bound for the Mostar and edge Mostar indices of a tree in terms of its diameter is given. Next, the trees with the smallest and the largest Mostar and edge Mostar indices are also given. Finally, a recent conjecture of Liu, Song, Xiao, and Tang (2020) on bicyclic graphs with a given order, for which extremal values of the edge Mostar index are attained, will be proved. In addition, some new open questions are presented.



2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Gaixiang Cai ◽  
Xing-Xing Li ◽  
Guidong Yu

The reciprocal degree resistance distance index of a connected graph G is defined as RDR G = ∑ u , v ⊆ V G d G u + d G v / r G u , v , where r G u , v is the resistance distance between vertices u and v in G . Let ℬ n denote the set of bicyclic graphs without common edges and with n vertices. We study the graph with the maximum reciprocal degree resistance distance index among all graphs in ℬ n and characterize the corresponding extremal graph.



2013 ◽  
Vol 29 (11) ◽  
pp. 2193-2208 ◽  
Author(s):  
Lin Chen ◽  
Qiong Xiang Huang


Sign in / Sign up

Export Citation Format

Share Document