scholarly journals Sharp bounds for the Zagreb indices of bicyclic graphs with k-pendant vertices

2010 ◽  
Vol 158 (17) ◽  
pp. 1953-1962 ◽  
Author(s):  
Qin Zhao ◽  
Shuchao Li
2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Wei Gao ◽  
Muhammad Kamran Jamil ◽  
Aisha Javed ◽  
Mohammad Reza Farahani ◽  
Shaohui Wang ◽  
...  

The hyper-Zagreb index is an important branch in the Zagreb indices family, which is defined as∑uv∈E(G)‍(d(u)+d(v))2, whered(v)is the degree of the vertexvin a graphG=(V(G),E(G)). In this paper, the monotonicity of the hyper-Zagreb index under some graph transformations was studied. Using these nice mathematical properties, the extremal graphs amongn-vertex trees (acyclic), unicyclic, and bicyclic graphs are determined for hyper-Zagreb index. Furthermore, the sharp upper and lower bounds on the hyper-Zagreb index of these graphs are provided.


2010 ◽  
Vol 22 (2) ◽  
pp. 252-269 ◽  
Author(s):  
Ailin Hou ◽  
Shuchao Li ◽  
Lanzhen Song ◽  
Bing Wei

2012 ◽  
Vol 27 (2) ◽  
pp. 271-291 ◽  
Author(s):  
John Estes ◽  
Bing Wei
Keyword(s):  

Author(s):  
Aisha Javed ◽  
Muhammad Kamran Jamil ◽  
Jia-Bao Liu ◽  
Akbar Ali

Background:: A topological index of a molecular graph is the numeric quantity which can predict certain physical and chemical properties of the corresponding molecule. Xu et al. introduced some graph transformations which increase or decrease the first and second multiplicative Zagreb indices and proposed a unified approach to characterize extremal (n, m)- graphs. Method:: Graph transformations are used to find the extremal graphs, these transformations either increase or decrease the general multiplicative Zagreb indices. By applying the transformations which increase the general multiplicative Zagreb indices we find the graphs with maximal general multiplicative Zagreb indices and for minimal general Zagreb indices we use the transformations which decrease the index. Result:: In this paper, we extend the Xu’s results and show that the same graph transformations increase or decrease the first and second general multiplicative Zagreb indices for . As an application, the extremal acyclic, unicyclic and bicyclic graphs are presented for general multiplicative Zagreb indices. Conclusion:: By applying the transformation we investigated that in the class of acyclic, unicyclic and bicyclic graphs, which graph gives the minimum and the maximum general multiplicative Zagreb indices.


2015 ◽  
Vol 92 (2) ◽  
pp. 177-186 ◽  
Author(s):  
MINGQIANG AN ◽  
LIMING XIONG

The classical first and second Zagreb indices of a graph $G$ are defined as $M_{1}(G)=\sum _{v\in V(G)}d(v)^{2}$ and $M_{2}(G)=\sum _{e=uv\in E(G)}d(u)d(v),$ where $d(v)$ is the degree of the vertex $v$ of $G.$ Recently, Furtula et al. [‘On difference of Zagreb indices’, Discrete Appl. Math.178 (2014), 83–88] studied the difference of $M_{1}$ and $M_{2},$ and showed that this difference is closely related to the vertex-degree-based invariant $RM_{2}(G)=\sum _{e=uv\in E(G)}[d(u)-1][d(v)-1]$, the reduced second Zagreb index. In this paper, we present sharp bounds for the reduced second Zagreb index, given the matching number, independence number and vertex connectivity, and we also completely determine the extremal graphs.


Filomat ◽  
2012 ◽  
Vol 26 (6) ◽  
pp. 1189-1200 ◽  
Author(s):  
Shuchao Li ◽  
Huangxu Yang ◽  
Qin Zhao

For a (molecular) graph, the first Zagreb index M1 is equal to the sum of squares of its vertex degrees, and the second Zagreb index M2 is equal to the sum of products of degrees of pairs of adjacent vertices. A connected graph G is a cactus if any two of its cycles have at most one common vertex. In this paper, we investigate the first and the second Zagreb indices of cacti with k pendant vertices. We determine sharp bounds for M1 -, M2 -values of n-vertex cacti with k pendant vertices. As a consequence, we determine the n-vertex cacti with maximal Zagreb indices and we also determine the cactus with a perfect matching having maximal Zagreb indices.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 94143-94149 ◽  
Author(s):  
Doost Ali Mojdeh ◽  
Mohammad Habibi ◽  
Leila Badakhshian ◽  
Yongsheng Rao

Sign in / Sign up

Export Citation Format

Share Document