Compact difference schemes for heat equation with Neumann boundary conditions

2009 ◽  
Vol 25 (6) ◽  
pp. 1320-1341 ◽  
Author(s):  
Zhi-Zhong Sun
Author(s):  
Ozgur Yildirim

In this paper, third and fourth order of accuracy stable difference schemes for approximately solving multipoint nonlocal boundary value problems for hyperbolic equations with the Neumann boundary conditions are considered. Stability estimates for the solutions of these difference schemes are presented. Finite difference method is used to obtain numerical solutions. Numerical results of errors and CPU times are presented and are analyzed.


2022 ◽  
Vol 40 ◽  
pp. 1-8
Author(s):  
Samira Lecheheb ◽  
Hakim Lakhal ◽  
Messaoud Maouni

My abstract is:This paper is devoted to the study of the existence of weak solutionsfor quasilinear systems of a partial dierential equations which are the combinationof the Perona-Malik equation and the Heat equation. The proof of the main resultsare based on the compactness method and the motonocity arguments.


Filomat ◽  
2021 ◽  
Vol 35 (5) ◽  
pp. 1495-1509
Author(s):  
Dakang Cen ◽  
Zhibo Wang ◽  
Yan Mo

In this paper, we develop a fast compact difference scheme for the fourth-order multi-term fractional sub-diffusion equation with Neumann boundary conditions. Combining L1 formula on graded meshes and the efficient sum-of-exponentials approximation to the kernels, the proposed scheme recovers the losing temporal convergence accuracy and spares the computational costs. Meanwhile, difficulty caused by the Neumann boundary conditions and fourth-order derivative is also carefully handled. The unique solvability, unconditional stability and convergence of the proposed scheme are analyzed by the energy method. At last, the theoretical results are verified by numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document