Computation of nash equilibrium pairs of a stochastic differential game

2007 ◽  
Vol 2 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Y. Yavin ◽  
G. Reuter
2010 ◽  
Vol 47 (2) ◽  
pp. 335-349 ◽  
Author(s):  
Xudong Zeng

We study a stochastic differential game between two insurance companies who employ reinsurance to reduce the risk of exposure. Under the assumption that the companies have large insurance portfolios compared to any individual claim size, their surplus processes can be approximated by stochastic differential equations. We formulate competition between the two companies as a game with a single payoff function which depends on the surplus processes. One company chooses a dynamic reinsurance strategy in order to maximize this expected payoff, while the other company simultaneously chooses a dynamic reinsurance strategy so as to minimize the same quantity. We describe the Nash equilibrium of this stochastic differential game and solve it explicitly for the case of maximizing/minimizing the exit probability.


2010 ◽  
Vol 47 (02) ◽  
pp. 335-349 ◽  
Author(s):  
Xudong Zeng

We study a stochastic differential game between two insurance companies who employ reinsurance to reduce the risk of exposure. Under the assumption that the companies have large insurance portfolios compared to any individual claim size, their surplus processes can be approximated by stochastic differential equations. We formulate competition between the two companies as a game with a single payoff function which depends on the surplus processes. One company chooses a dynamic reinsurance strategy in order to maximize this expected payoff, while the other company simultaneously chooses a dynamic reinsurance strategy so as to minimize the same quantity. We describe the Nash equilibrium of this stochastic differential game and solve it explicitly for the case of maximizing/minimizing the exit probability.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 132
Author(s):  
Valery Y. Glizer

A finite-horizon two-person non-zero-sum differential game is considered. The dynamics of the game is linear. Each of the players has a quadratic functional on its own disposal, which should be minimized. The case where weight matrices in control costs of one player are singular in both functionals is studied. Hence, the game under the consideration is singular. A novel definition of the Nash equilibrium in this game (a Nash equilibrium sequence) is proposed. The game is solved by application of the regularization method. This method yields a new differential game, which is a regular Nash equilibrium game. Moreover, the new game is a partial cheap control game. An asymptotic analysis of this game is carried out. Based on this analysis, the Nash equilibrium sequence of the pairs of the players’ state-feedback controls in the singular game is constructed. The expressions for the optimal values of the functionals in the singular game are obtained. Illustrative examples are presented.


Sign in / Sign up

Export Citation Format

Share Document