Axioms
Latest Publications


TOTAL DOCUMENTS

908
(FIVE YEARS 644)

H-INDEX

14
(FIVE YEARS 9)

Published By Mdpi Ag

2075-1680

Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Zachary McGuirk ◽  
Byungdo Park

In the homotopy theory of spaces, the image of a continuous map is contractible to a point in its cofiber. This property does not apply when we discretize spaces and continuous maps to directed graphs and their morphisms. In this paper, we give a construction of a cofiber of a directed graph map whose image is contractible in the cofiber. Our work reveals that a category-theoretically correct construction in continuous setup is no longer correct when it is discretized and hence leads to look at canonical constructions in category theory in a different perspective.


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Andriy Ivanovych Bandura ◽  
Tetyana Mykhailivna Salo ◽  
Oleh Bohdanovych Skaskiv

The present paper is devoted to the properties of entire vector-valued functions of bounded L-index in join variables, where L:Cn→R+n is a positive continuous function. For vector-valued functions from this class we prove some propositions describing their local properties. In particular, these functions possess the property that maximum of norm for some partial derivative at a skeleton of polydisc does not exceed norm of the derivative at the center of polydisc multiplied by some constant. The converse proposition is also true if the described inequality is satisfied for derivative in each variable.


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Antonio Leaci ◽  
Franco Tomarelli

We establish some properties of the bilateral Riemann–Liouville fractional derivative Ds.  We set the notation, and study the associated Sobolev spaces of fractional order s, denoted by Ws,1(a,b), and the fractional bounded variation spaces of fractional order s, denoted by BVs(a,b). Examples, embeddings and compactness properties related to these spaces are addressed, aiming to set a functional framework suitable for fractional variational models for image analysis.


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 29
Author(s):  
Talha Usman ◽  
Nabiullah Khan ◽  
Mohd Aman ◽  
Junesang Choi

Numerous polynomials, their extensions, and variations have been thoroughly explored, owing to their potential applications in a wide variety of research fields. The purpose of this work is to provide a unified family of Legendre-based generalized Apostol-Bernoulli, Apostol-Euler, and Apostol-Genocchi polynomials, with appropriate constraints for the Maclaurin series. Then we look at the formulae and identities that are involved, including an integral formula, differential formulas, addition formulas, implicit summation formulas, and general symmetry identities. We also provide an explicit representation for these new polynomials. Due to the generality of the findings given here, various formulae and identities for relatively simple polynomials and numbers, such as generalized Bernoulli, Euler, and Genocchi numbers and polynomials, are indicated to be deducible. Furthermore, we employ the umbral calculus theory to offer some additional formulae for these new polynomials.


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Yasuhiro Takei ◽  
Yoritaka Iwata

A numerical scheme for nonlinear hyperbolic evolution equations is made based on the implicit Runge-Kutta method and the Fourier spectral method. The detailed discretization processes are discussed in the case of one-dimensional Klein-Gordon equations. In conclusion, a numerical scheme with third-order accuracy is presented. The order of total calculation cost is O(Nlog2N). As a benchmark, the relations between numerical accuracy and discretization unit size and that between the stability of calculation and discretization unit size are demonstrated for both linear and nonlinear cases.


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Mehmet Ali Öztürk ◽  
Damla Yılmaz ◽  
Young Bae Jun

First, semigroup structure is constructed by providing binary operations for the crossing cubic set structure. The concept of commutative crossing cubic ideal is introduced by applying crossing cubic set structure to commutative ideal in BCK-algebra, and several properties are investigated. The relationship between crossing cubic ideal and commutative crossing cubic ideal is discussed. An example to show that crossing cubic ideal is not commutative crossing cubic ideal is given, and then the conditions in which crossing cubic ideal can be commutative crossing cubic ideal are explored. Characterizations of commutative crossing cubic ideal are discussed, and the relationship between commutative crossing cubic ideal and crossing cubic level set is considered. An extension property of commutative crossing cubic ideal is established, and the translation of commutative crossing cubic ideal is studied. Conditions for the translation of crossing cubic set structure to be commutative crossing cubic ideal are provided, and its characterization is processed.


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Song-Kyoo (Amang) Kim

The research designs a new integrated system for the security enhancement of a decentralized network by preventing damages from attackers, particularly for the 51 percent attack. The concept of multiple layered design based on Blockchain Governance Games frameworks could handle multiple number of networks analytically. The Multi-Layered Blockchain Governance Game is an innovative analytical model to find the best strategies for executing a safety operation to protect whole multiple layered network systems from attackers. This research fully analyzes a complex network with the compact mathematical forms and theoretically tractable results for predicting the moment of a safety operation execution are fully obtained. Additionally, simulation results are demonstrated to obtain the optimal values of configuring parameters of a blockchain-based security network. The Matlab codes for the simulations are publicly available to help those whom are constructing an enhanced decentralized security network architecture through this proposed integrated theoretical framework.


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Oles Dobosevych ◽  
Rostyslav Hryniv

We study spectral properties of a wide class of differential operators with frozen arguments by putting them into a general framework of rank-one perturbation theory. In particular, we give a complete characterization of possible eigenvalues for these operators and solve the inverse spectral problem of reconstructing the perturbation from the resulting spectrum. This approach provides a unified treatment of several recent studies and gives a clear explanation and interpretation of the obtained results.


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Erhan Güler ◽  
Ömer Kişi

We introduce the real minimal surfaces family by using the Weierstrass data (ζ−m,ζm) for ζ∈C, m∈Z≥2, then compute the irreducible algebraic surfaces of the surfaces family in three-dimensional Euclidean space E3. In addition, we propose that family has a degree number (resp., class number) 2m(m+1) in the cartesian coordinates x,y,z (resp., in the inhomogeneous tangential coordinates a,b,c).


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Eng Leong Tan

The leapfrog schemes have been developed for unconditionally stable alternating-direction implicit (ADI) finite-difference time-domain (FDTD) method, and recently the complying-divergence implicit (CDI) FDTD method. In this paper, the formulations from time-collocated to leapfrog fundamental schemes are presented for ADI and CDI FDTD methods. For the ADI FDTD method, the time-collocated fundamental schemes are implemented using implicit E-E and E-H update procedures, which comprise simple and concise right-hand sides (RHS) in their update equations. From the fundamental implicit E-H scheme, the leapfrog ADI FDTD method is formulated in conventional form, whose RHS are simplified into the leapfrog fundamental scheme with reduced operations and improved efficiency. For the CDI FDTD method, the time-collocated fundamental scheme is presented based on locally one-dimensional (LOD) FDTD method with complying divergence. The formulations from time-collocated to leapfrog schemes are provided, which result in the leapfrog fundamental scheme for CDI FDTD method. Based on their fundamental forms, further insights are given into the relations of leapfrog fundamental schemes for ADI and CDI FDTD methods. The time-collocated fundamental schemes require considerably fewer operations than all conventional ADI, LOD and leapfrog ADI FDTD methods, while the leapfrog fundamental schemes for ADI and CDI FDTD methods constitute the most efficient implicit FDTD schemes to date.


Sign in / Sign up

Export Citation Format

Share Document