Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells

2012 ◽  
Vol 22 (6) ◽  
pp. 671-689 ◽  
Author(s):  
Olindo Isabella ◽  
Hitoshi Sai ◽  
Michio Kondo ◽  
Miro Zeman
2006 ◽  
Vol 90 (18-19) ◽  
pp. 3416-3421 ◽  
Author(s):  
Y. Fujioka ◽  
A. Shimizu ◽  
H. Fukuda ◽  
T. Oouchida ◽  
S. Tachibana ◽  
...  

2012 ◽  
Vol 51 (10S) ◽  
pp. 10NB02 ◽  
Author(s):  
Tomomi Meguro ◽  
Andrea Feltrin ◽  
Takashi Suezaki ◽  
Mitsuru Ichikawa ◽  
Takashi Kuchiyama ◽  
...  

Author(s):  
Thomas Lanz ◽  
Nils A. Reinke ◽  
Beat Ruhstaller ◽  
Benjamin Perucco ◽  
Daniele Rezzonico

2012 ◽  
Vol 1426 ◽  
pp. 131-135
Author(s):  
Mathieu Boccard ◽  
Matthieu Despeisse ◽  
Christophe Ballif

ABSTRACTThe challenge for all photovoltaic technologies is to maximize light absorption, convert photons with minimal losses to electrical charges and efficiently extract them towards the electrical circuit. For thin film silicon solar cells, a compromise must be found as light trapping is usually performed through textured interfaces, that are detrimental to the subsequent growth of dense and high quality silicon layers. We introduce here the concept of smoothening intermediate reflecting layers (IRL), enabling to combine high currents and good electrical quality in Micromorph devices in the superstrate configuration. After exposing the motivation for such structures, we validate the concept by showing a VOCenhancement when employing a polished silicon-oxide-based IRL. Shunting issues and additional reflection losses are pointed out with such technique, highlighting the need to develop alternative techniques for an efficient morphology adaptation before the microcrystalline silicon cell growth.


1998 ◽  
Vol 51 (1) ◽  
pp. 95-104 ◽  
Author(s):  
G.F. Zheng ◽  
W. Zhang ◽  
Z. Shi ◽  
D. Thorp ◽  
R.B. Bergmann ◽  
...  

2015 ◽  
Vol 54 (8S1) ◽  
pp. 08KB10 ◽  
Author(s):  
Takuya Matsui ◽  
Keigou Maejima ◽  
Adrien Bidiville ◽  
Hitoshi Sai ◽  
Takashi Koida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document