Block balance in hydrogenated polybutadiene-b-polymethylmethacrylate diblock copolymer for efficient interfacial activity in low-density polyethylene/polymethylmethacrylate blend: Phase morphology development

2005 ◽  
Vol 43 (7) ◽  
pp. 837-848 ◽  
Author(s):  
C. Harrats ◽  
R. Jérôme
2014 ◽  
Vol 979 ◽  
pp. 143-146 ◽  
Author(s):  
Surakit Tuampoemsab ◽  
Saad Riyajan ◽  
Thritima Sritapunya ◽  
Pornsri Pakeyangkoon

Studies on the effect of percentages of epoxide group in thermoplastic elastomer as a compatibilizer on properties of polyamide6 (PA6) and low-density polyethylene (LDPE) blends was successfully carried out in this study. Thermoplastic epoxidized natural rubber (TPENR), made from epoxidized natural rubber (ENR) and LDPE, prepared from 3 types of ENR, i.e., ENR-20, ENR-50 and ENR-70, with the ratio of 90/10 of LDPE/ENR by weight. TPENR was applied as a compatibilizer into the blend of PA6/LDPE/TPENR at the ratio by weight of 80/20/1 by using a twin screw extruder at 235°C. All test specimens were characterized for phase morphology, impact strength and rheological behaviour. Results exhibited that phase morphology of PA6/LDPE blend was incompatible. The addition of TPENR improved the compatibility of PA6/LDPE blends. With inclusion of TPENR-20 as a compatibilizer, the uniformity and the maximum reduction of dispersed phase sized were observed. Moreover, it was revealed that the rheological properties such as shear viscosity increased when compared with PA6/LDPE incompatible blend. In addition, it was found that the highest shear viscosity and also the highest impact strength were obtained for the blend of PA6/LDPE compatibilized by TPENR-20. This result was further supported by SEM images, which showed that the smallest dispersed phase size occurred when a TPENR-20 was used as a compatibilizer. So, it was clearly demonstrated in this study that the suitable type of TPENR, i.e., TPENR-20, has an effect on improving phase morphology and properties of PA6/LDPE blends.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Blerina Kolgjini ◽  
Gustaaf Schoukens ◽  
Paul Kiekens

This study comprises a detailed morphological study of cold-drawn polyethylene monofilaments by Raman spectroscopy, differential scanning calorimetry (DSC) and X-ray measurements. The structure of the three-phase morphology of the linear low-density polyethylene monofilaments was investigated by combining these measurements. It was found that the most important structure variation was found in the intermediate or rigid amorphous phase, whereby the amounts of crystalline and amorphous phases were nearly constant and almost independent of the cold-draw ratio. The intermediate third phase contains gauche and transmolecules, and the amount of transmolecules was increased with the cold-draw ratio and was directly related to this cold-draw ratio. It was found that the two peaks in the Raman spectra, respectively, at 1303 and 1295 cm-1, can be correlated to the amount of gauche and transmolecules in the polyethylene monofilaments. A good and new insight into the three-phase morphology was obtained by combining the DSC and X-ray measurements with the amounts of trans- and gauche molecules from the Raman spectra analysis.


Sign in / Sign up

Export Citation Format

Share Document