linear low density polyethylene
Recently Published Documents


TOTAL DOCUMENTS

1086
(FIVE YEARS 147)

H-INDEX

54
(FIVE YEARS 6)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 239
Author(s):  
Ruben Demets ◽  
Marie Grodent ◽  
Karen Van Van Kets ◽  
Steven De De Meester ◽  
Kim Ragaert

Current recycling technologies rarely achieve 100% pure plastic fractions from a single polymer type. Often, sorted bales marked as containing a single polymer type in fact contain small amounts of other polymers as contaminants. Inevitably, this will affect the properties of the recycled plastic. This work focuses on understanding the changes in tensile deformation mechanism and the related mechanical properties of the four dominant types of polyolefin (PO) (linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP)), contaminated with three different non-polyolefin (NPO) polymers (polyamide-6 (PA-6), polyethylene terephthalate (PET), and polystyrene (PS)). Under the locally elevated stress state induced by the NPO phase, the weak interfacial adhesion typically provokes decohesion. The resulting microvoids, in turn, initiate shear yielding of the PO matrix. LLDPE, due to the linear structure and intercrystalline links, is well able to maintain high ductility when contaminated. LDPE shows deformation similar to the pure material, but with decreasing ductility as the amount of NPO increases. Addition of 20 wt% PA-6, PET, and PS causes a drop in strain at break of 79%, 63%, and 84%, respectively. The typical ductile necking of the high-crystalline HDPE and PP is strongly disturbed by the NPO phase, with a transition even to full brittle failure at high NPO concentration.


Author(s):  
Olena Chulieieva ◽  
Volodymyr Zolotaryov ◽  
Volodymyr Chulieiev ◽  
Tetiana Kuleshova ◽  
Mykola Suslin

The viscoelastic properties of a halogen-free polymer composition for cable products have been investigated. The influence of temperature parameters, shear rate on the die-swell ratio of the polymer composition has been determined; the dependence of the melt density on a temperature was investigated. The polymer matrix is a mixture of polyolefins (linear low density polyethylene; polyolefin elastomer and maleic anhydride modified linear low density polyethylene) as a flame retardant filler for the polymer composition is trihydrate alumina. The content of flame retardant filler in the polymer composition is 60 %. The polymer composition was manufactured on the compounding line of X-Compound, Switzerland. The investigation of both melt density and die-swell ratio of the polymer composition has been conducted with help of capillary viscometer type IIRT-AM. To determine the density of the melt the ratio of capillary length to diameter L/D=8/2 was used. The results of the study of the dependence of the melt density of the polymer matrix from a temperature of 150–190 °C at different loads showed that this parameter decreases from 789 to 744 kg/m3 and for polymer composition from 1309 to 1268 kg/m3. The die-swell ratio in the case of an increase of the shear rate at temperatures of 150–190°C for the polymer matrix increases from 1,102 to 1,520, and for the polymer composition decreases from 1,056 to 1,018. The investigation results of the dependence of both die-swell ratio of the polymer matrix and the polymer composition on the ratio of the length of the forming tool to the diameter indicates that the die-swell ratio for the polymer matrix was reduced from 1,296 to 1,152, and for the polymer composition from 1,045 to 1,01. It was established that the viscoelastic properties of the halogen-free polymer composition are significantly influenced by: processing temperature, shear rate, melt density, the ratio of the length of the forming tool to the diameter. The research results give a possibility for a reasonable approach for the determination of technological parameters of an insulation, sheathing of power cables and optical cables of microtube construction. It will also allow to quickly adjust the geometrical parameters of the forming tool of cable heads.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1520
Author(s):  
Salem Mohammed Aldosari ◽  
Sameer Rahatekar

Mesophase pitch-based carbon fibres have excellent resistance to plastic deformation (up to 840 GPa); however, they have very low strain to failure (0.3) and are considered brittle. Hence, the development of pitch fibre precursors able to be plastically deformed without fracture is important. We have previously, successfully developed pitch-based precursor fibres with high ductility (low brittleness) by blending pitch and linear low-density polyethylene. Here, we extend our research to study how the extrusion dwell time (0, 6, 8, and 10 min) affects the physical properties (microstructure) of blend fibres. Scanning electron microscopy of the microstructure showed that by increasing the extrusion dwell from 0 to 10 min the pitch and polyethylene components were more uniformly dispersed. The tensile strength, modulus of elasticity, and strain at failure for the extruded fibres for different dwell times were measured. Increased dwell time resulted in an increase in strain to failure but reduced the ultimate tensile strength. Thermogravimetric analysis was used to investigate if increased dwell time improved the thermal stability of the samples. This study presents a useful guide to help with the selection of mixes of linear low-density polyethylene/pitch blend, with an appropriate extrusion dwell time to help develop a new generation of potential precursors for pitch-based carbon fibres.


2021 ◽  
Vol 2 (4) ◽  
pp. 622-644
Author(s):  
Collin Coben ◽  
Erol Sancaktar

In the competitive market of plastic fillers, inexpensive and reliable materials are always sought after. Using a method of thermal conversion called pyrolysis, a potential contender was created from a plant biomass known as soybean hulls (SBH). SBH are a byproduct of the soybean farming industry and represent an abundant and inexpensive feedstock. The thermal conversion of SBH material gives rise to a lightweight carbon-rich filler called pyrolyzed soybean hulls (PSBH). We created two separate lots, lots A and B, with lot A corresponding to SBH pyrolyzed at 450 °C (PSBH-A) and lot B corresponding to SBH pyrolyzed at 500 °C (PSBH-B). Both lots of PSBH were also milled to reduce their particle size and tested against the as-received PSBH fillers. These milled materials were designated as ground soybean hulls (GSBH). Two different polyolefins, linear low-density polyethylene (LLDPE) and polypropylene (PP), were used for this study. The PSBH fillers were added to the polyolefins in weight percentages of 10%, 20%, 30%, 40%, and 50%, with the resulting plastic/PSBH composites being tested for their mechanical, thermal, and water absorption properties. In general, the addition of filler increased the maximum stress of the LLDPE/PSBH composites while reducing maximum stress of the PP/PSBH composites. The strain at maximum stress was reduced with increasing amounts of the PSBH filler for all composites. The modulus of elasticity generally increased with increasing filler amount. For thermal properties, the addition of the PSBH filler increased the heat distortion temperature, increased the thermal decomposition temperature, and reduced the heat of fusion of the composites compared to the neat polyolefins. The liquid absorption and thickness swelling in the materials were small overall but did increase with increasing amounts of the PSBH filler and with the time spent submerged in liquid. Milling the PSBH material into GSBH generally had small effects on the various tested material properties and led to easier mixing and a smoother finish on the surface of processed samples. The differences observed between lot A and lot B composites were often small or even negligible.


Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121396
Author(s):  
S.M. Al-Salem ◽  
Sriraam R. Chandrasekaran ◽  
Animesh Dutta ◽  
Brajendra K. Sharma

2021 ◽  
Vol 5 (10) ◽  
pp. 270
Author(s):  
Thanh Tung Nguyen ◽  
Van Khoi Nguyen ◽  
Thi Thu Ha Pham ◽  
Thu Trang Pham ◽  
Trung Duc Nguyen

To evaluate the effects of surface modification with stearic acid on the dispersion of some inorganic fillers in polyethylene (PE) matrix, masterbatches containing 20–40 wt% of stearic acid uncoated and coated inorganic fillers and the linear low-density polyethylene (LLDPE) films containing 3–7% stearic acid uncoated and coated inorganic fillers were prepared. Two types of inorganic fillers used in the masterbatch included bentonite and silica. The structural change of inorganic fillers, whose surface was modified with stearic acid, was studied using IR spectroscopy. The dispersion of inorganic fillers in LLDPE matrix was evaluated using scanning electron microscope (masterbatch samples) and optical microscope (film samples). Changes in the melting temperature of LLDPE in the presence of inorganic fillers were evaluated by using differential scanning calorimeter (DSC). The mechanical properties of the films were evaluated according to ASTM D882. Surface-treated fillers with stearic acid dispersed in the masterbatches and films better than untreated fillers did. Stearic acid did not change the melting temperature of the filler/PE masterbatches. The mechanical properties of the films containing stearic acid coated fillers were higher than those containing unmodified fillers.


Sign in / Sign up

Export Citation Format

Share Document