Optimal sensor placement for damage detection of bridges subject to ship collision

2016 ◽  
Vol 24 (9) ◽  
pp. e1963 ◽  
Author(s):  
Y.L. Guo ◽  
Y.Q. Ni ◽  
S.K. Chen
Author(s):  
Sunilkumar Soni ◽  
Santanu Das ◽  
Aditi Chattopadhyay

An optimal sensor placement methodology is proposed based on detection theory framework to maximize the detection rate and minimize the false alarm rate. Minimizing the false alarm rate for a given detection rate plays an important role in improving the efficiency of a Structural Health Monitoring (SHM) system as it reduces the number of false alarms. The placement technique is such that the sensor features are as directly correlated and as sensitive to damage as possible. The technique accounts for a number of factors, like actuation frequency and strength, minimum damage size, damage detection scheme, material damping, signal to noise ratio (SNR) and sensing radius. These factors are not independent and affect each other. Optimal sensor placement is done in two steps. First, a sensing radius, which can capture any detectable change caused by a perturbation and above a certain threshold, is calculated. This threshold value is based on Neyman-Pearson detector that maximizes the detection rate for a fixed false alarm rate. To avoid sensor redundancy, a criterion to minimize sensing region overlaps of neighboring sensors is defined. Based on the sensing region and the minimum overlap concept, number of sensors needed on a structural component is calculated. In the second step, a damage distribution pattern, known as probability of failure distribute, is calculated for a structural component using finite element analysis. This failure distribution helps in selecting the most sensitive sensors, thereby removing those making remote contributions to the overall detection scheme.


2014 ◽  
Vol 29 (3) ◽  
pp. 121-136 ◽  
Author(s):  
Sahar Beygzadeh ◽  
Eysa Salajegheh ◽  
Peyman Torkzadeh ◽  
Javad Salajegheh ◽  
Seyed Sadegh Naseralavi

2021 ◽  
Vol 17 (1) ◽  
pp. 155014772199171
Author(s):  
Jun-Hyeok Song ◽  
Eun-Taik Lee ◽  
Hee-Chang Eun

Optimal sensor placement is used to establish the optimal sensor quantity and layout. In this study, the minimum quantity and locations of measurement sensors were assumed to satisfy the constraint conditions of the optimal sensor placement. A set of strain data in a truss structure was expanded to another set of displacements corresponding to the entire degrees of freedom from the relationship between the strain and displacement. It indicates to reduce the number of sensors because the strain depends on the displacements in a finite element model. The damaged truss element was traced using the expanded data that satisfied the prescribed constraints. The proposed optimal sensor placement method has a merit to explicitly determine the optimal sensor locations without any numerical scheme and statistical methods. The method was applied to the damage detection of a single-damaged truss structure. It was shown that the optimal sensor placement method depended on the sensor layout irrespective of the same quantity of sensors. In addition, a numerical example was used to compare sensitivities to damage detection based on the sensor placement and the existence of external noise contained in the measurement data.


2020 ◽  
Vol 14 (1) ◽  
pp. 69-81
Author(s):  
C.H. Li ◽  
Q.W. Yang

Background: Structural damage identification is a very important subject in the field of civil, mechanical and aerospace engineering according to recent patents. Optimal sensor placement is one of the key problems to be solved in structural damage identification. Methods: This paper presents a simple and convenient algorithm for optimizing sensor locations for structural damage identification. Unlike other algorithms found in the published papers, the optimization procedure of sensor placement is divided into two stages. The first stage is to determine the key parts in the whole structure by their contribution to the global flexibility perturbation. The second stage is to place sensors on the nodes associated with those key parts for monitoring possible damage more efficiently. With the sensor locations determined by the proposed optimization process, structural damage can be readily identified by using the incomplete modes yielded from these optimized sensor measurements. In addition, an Improved Ridge Estimate (IRE) technique is proposed in this study to effectively resist the data errors due to modal truncation and measurement noise. Two truss structures and a frame structure are used as examples to demonstrate the feasibility and efficiency of the presented algorithm. Results: From the numerical results, structural damages can be successfully detected by the proposed method using the partial modes yielded by the optimal measurement with 5% noise level. Conclusion: It has been shown that the proposed method is simple to implement and effective for structural damage identification.


2021 ◽  
pp. 110956
Author(s):  
Gowri Suryanarayana ◽  
Javier Arroyo ◽  
Lieve Helsen ◽  
Jesus Lago

Sign in / Sign up

Export Citation Format

Share Document