Using big data analytics to synthesize research domains and identify emerging fields in urban climatology

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Fei Huo ◽  
Li Xu ◽  
Yanping Li ◽  
James S. Famiglietti ◽  
Zhenhua Li ◽  
...  

Author(s):  
Atik Kulakli

The purpose of this chapter is to analyze and explore the research studies for scholarly publication trends and patterns related to the integration of data mining in particular business intelligence in big data analytics domains published in the period of 2010-2019. Research patterns explore in highly prestigious sources that have high impact factors and citations counted in the ISI Web of Science Core Collection database (indexes included SCI-Exp and SSCI). Bibliometric analysis methods applied for this study under the research limitations. Research questions formed based on bibliometric principles concentrating fields such as descriptive of publication, author productivity, country-regions distribution, keyword analysis with contribution among researchers, citation analysis, co-citation patterns searched. Findings showed strong relations and patterns on these important research domains. Besides this chapter would useful for researchers to obtain an overview of publication trends on research domains to be concerned for further studies and shows the potential gaps in those fields.



2022 ◽  
pp. 1892-1922
Author(s):  
Atik Kulakli

The purpose of this chapter is to analyze and explore the research studies for scholarly publication trends and patterns related to the integration of data mining in particular business intelligence in big data analytics domains published in the period of 2010-2019. Research patterns explore in highly prestigious sources that have high impact factors and citations counted in the ISI Web of Science Core Collection database (indexes included SCI-Exp and SSCI). Bibliometric analysis methods applied for this study under the research limitations. Research questions formed based on bibliometric principles concentrating fields such as descriptive of publication, author productivity, country-regions distribution, keyword analysis with contribution among researchers, citation analysis, co-citation patterns searched. Findings showed strong relations and patterns on these important research domains. Besides this chapter would useful for researchers to obtain an overview of publication trends on research domains to be concerned for further studies and shows the potential gaps in those fields.



2019 ◽  
Vol 54 (5) ◽  
pp. 20
Author(s):  
Dheeraj Kumar Pradhan


2020 ◽  
Vol 49 (5) ◽  
pp. 11-17
Author(s):  
Thomas Wrona ◽  
Pauline Reinecke

Big Data & Analytics (BDA) ist zu einer kaum hinterfragten Institution für Effizienz und Wettbewerbsvorteil von Unternehmen geworden. Zu viele prominente Beispiele, wie der Erfolg von Google oder Amazon, scheinen die Bedeutung zu bestätigen, die Daten und Algorithmen zur Erlangung von langfristigen Wettbewerbsvorteilen zukommt. Sowohl die Praxis als auch die Wissenschaft scheinen geradezu euphorisch auf den „Datenzug“ aufzuspringen. Wenn Risiken thematisiert werden, dann handelt es sich meist um ethische Fragen. Dabei wird häufig übersehen, dass die diskutierten Vorteile sich primär aus einer operativen Effizienzperspektive ergeben. Strategische Wirkungen werden allenfalls in Bezug auf Geschäftsmodellinnovationen diskutiert, deren tatsächlicher Innovationsgrad noch zu beurteilen ist. Im Folgenden soll gezeigt werden, dass durch BDA zwar Wettbewerbsvorteile erzeugt werden können, dass aber hiermit auch große strategische Risiken verbunden sind, die derzeit kaum beachtet werden.



2019 ◽  
Vol 7 (2) ◽  
pp. 273-277
Author(s):  
Ajay Kumar Bharti ◽  
Neha Verma ◽  
Deepak Kumar Verma


2017 ◽  
Vol 49 (004) ◽  
pp. 825--830
Author(s):  
A. AHMED ◽  
R.U. AMIN ◽  
M. R. ANJUM ◽  
I. ULLAH ◽  
I. S. BAJWA




2016 ◽  
Author(s):  
Janet Chan ◽  
Lyria Bennett Moses


Sign in / Sign up

Export Citation Format

Share Document