big data analytics
Recently Published Documents





2022 ◽  
Vol 34 (3) ◽  
pp. 1-18
Fang Qiao ◽  
Jago Williams

With the increasing extreme weather events and various disasters, people are paying more attention to environmental issues than ever, particularly global warming. Public debate on it has grown on various platforms, including newspapers and social media. This paper examines the topics and sentiments of the discussion of global warming on Twitter over a span of 18 months using two big data analytics techniques—topic modelling and sentiment analysis. There are seven main topics concerning global warming frequently debated on Twitter: factors causing global warming, consequences of global warming, actions necessary to stop global warming, relations between global warming and Covid-19; global warming’s relation with politics, global warming as a hoax, and global warming as a reality. The sentiment analysis shows that most people express positive emotions about global warming, though the most evoked emotion found across the data is fear, followed by trust. The study provides a general and critical view of the public’s principal concerns and their feelings about global warming on Twitter.

Xiaoni Wei

With the rapidly developing of the scientific research in the field of sports, big data analytics and information science are used to carry out technical and tactical statistical analysis of competition or training videos. The table tennis is a skill oriented sport. The technique and tactics in table tennis are the core factors to win the game. With the endlessly emerging innovative playing techniques and tactics, the players have their own competition styles. According to the competition events among athletes, the athletes’ competition relationship network is constructed and the players’ ranking is established. The ranking can be used to help table tennis players improve daily training and understand their ability. In this paper, the table tennis players’ ranking is established their competition videos and their prestige scores in the table tennis players’ competition relationship network.

2022 ◽  
Song Guo ◽  
Zhihao Qu

Discover this multi-disciplinary and insightful work, which integrates machine learning, edge computing, and big data. Presents the basics of training machine learning models, key challenges and issues, as well as comprehensive techniques including edge learning algorithms, and system design issues. Describes architectures, frameworks, and key technologies for learning performance, security, and privacy, as well as incentive issues in training/inference at the network edge. Intended to stimulate fruitful discussions, inspire further research ideas, and inform readers from both academia and industry backgrounds. Essential reading for experienced researchers and developers, or for those who are just entering the field.

2022 ◽  
Nitin Prajapati

The Aim of this research is to identify influence, usage, and the benefits of AI (Artificial Intelligence) and ML (Machine learning) using big data analytics in Insurance sector. Insurance sector is the most volatile industry since multiple natural influences like Brexit, pandemic, covid 19, Climate changes, Volcano interruptions. This research paper will be used to explore potential scope and use cases for AI, ML and Big data processing in Insurance sector for Automate claim processing, fraud prevention, predictive analytics, and trend analysis towards possible cause for business losses or benefits. Empirical quantitative research method is used to verify the model with the sample of UK insurance sector analysis. This research will conclude some practical insights for Insurance companies using AI, ML, Big data processing and Cloud computing for the better client satisfaction, predictive analysis, and trending.

Sign in / Sign up

Export Citation Format

Share Document