Local radial basis function scheme for solving a class of fractional integro‐differential equations based on the use of mixed integral equations

Author(s):  
Pouria Assari ◽  
Fatemeh Asadi‐Mehregan
2018 ◽  
Vol 34 (3) ◽  
pp. 959-981 ◽  
Author(s):  
Nam Mai-Duy ◽  
Deepak Dalal ◽  
Thi Thuy Van Le ◽  
Duc Ngo-Cong ◽  
Thanh Tran-Cong

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 270
Author(s):  
Cheng-Yu Ku ◽  
Jing-En Xiao ◽  
Chih-Yu Liu

In this article, a novel radial–based meshfree approach for solving nonhomogeneous partial differential equations is proposed. Stemming from the radial basis function collocation method, the novel meshfree approach is formulated by incorporating the radial polynomial as the basis function. The solution of the nonhomogeneous partial differential equation is therefore approximated by the discretization of the governing equation using the radial polynomial basis function. To avoid the singularity, the minimum order of the radial polynomial basis function must be greater than two for the second order partial differential equations. Since the radial polynomial basis function is a non–singular series function, accurate numerical solutions may be obtained by increasing the terms of the radial polynomial. In addition, the shape parameter in the radial basis function collocation method is no longer required in the proposed method. Several numerical implementations, including homogeneous and nonhomogeneous Laplace and modified Helmholtz equations, are conducted. The results illustrate that the proposed approach may obtain highly accurate solutions with the use of higher order radial polynomial terms. Finally, compared with the radial basis function collocation method, the proposed approach may produce more accurate solutions than the other.


Author(s):  
Ram Bilas Prasad ◽  
Jeeoot Singh ◽  
Karunesh Kumar Shukla

This article presents a torsional analysis of solid elliptical, hollow circular, and actual bone sections of orthotropic and functionally graded material. The formulation of the governing equation is done using the Saint-Venant torsion theory. A classical power law is considered for the modelling of functionally graded material. Five different radial basis functions-based meshless methods are used for the discretization of the governing differential equations. MATLAB code is developed to solve the discretized partial differential equations. A convergence and validation study has been carried out to demonstrate the effectiveness and accuracy of the present method. Numerical examples for torsional rigidity and shear stresses are presented for circular, elliptical, and bone-shaped irregular sections made up of orthotropic and functionally graded materials. Finally, the proposed radial basis function-based meshless method is applied to the modelling and torsional analysis of an actual bone cross-section.


Sign in / Sign up

Export Citation Format

Share Document